These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 19854860)

  • 21. L1 division and differentiation patterns influence shoot apical meristem maintenance.
    Kessler S; Townsley B; Sinha N
    Plant Physiol; 2006 Aug; 141(4):1349-62. PubMed ID: 16798950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The polar auxin transport inhibitor N-1-naphthylphthalamic acid disrupts leaf initiation, KNOX protein regulation, and formation of leaf margins in maize.
    Scanlon MJ
    Plant Physiol; 2003 Oct; 133(2):597-605. PubMed ID: 14500790
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Punctate vascular expression1 is a novel maize gene required for leaf pattern formation that functions downstream of the trans-acting small interfering RNA pathway.
    Zhang X; Douglas RN; Strable J; Lee M; Buckner B; Janick-Buckner D; Schnable PS; Timmermans MC; Scanlon MJ
    Plant Physiol; 2012 Aug; 159(4):1453-62. PubMed ID: 22669891
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Leaf senescence is delayed in tobacco plants expressing the maize knotted1 gene under the control of a wound-inducible promoter.
    Luo K; Deng W; Xiao Y; Zheng X; Li Y; Pei Y
    Plant Cell Rep; 2006 Nov; 25(11):1246-54. PubMed ID: 16794826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of the competence to respond to KNOTTED1 activity in Arabidopsis leaves using a steroid induction system.
    Hay A; Jackson D; Ori N; Hake S
    Plant Physiol; 2003 Apr; 131(4):1671-80. PubMed ID: 12692326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The maize rough sheath2 gene and leaf development programs in monocot and dicot plants.
    Tsiantis M; Schneeberger R; Golz JF; Freeling M; Langdale JA
    Science; 1999 Apr; 284(5411):154-6. PubMed ID: 10102817
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sectors expressing the homeobox gene liguleless3 implicate a time-dependent mechanism for cell fate acquisition along the proximal-distal axis of the maize leaf.
    Muehlbauer GJ; Fowler JE; Freeling M
    Development; 1997 Dec; 124(24):5097-106. PubMed ID: 9362467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The establishment of axial patterning in the maize leaf.
    Foster T; Hay A; Johnston R; Hake S
    Development; 2004 Aug; 131(16):3921-9. PubMed ID: 15253937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The milkweed pod1 gene encodes a KANADI protein that is required for abaxial/adaxial patterning in maize leaves.
    Candela H; Johnston R; Gerhold A; Foster T; Hake S
    Plant Cell; 2008 Aug; 20(8):2073-87. PubMed ID: 18757553
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MPB2C, a microtubule-associated protein, regulates non-cell-autonomy of the homeodomain protein KNOTTED1.
    Winter N; Kollwig G; Zhang S; Kragler F
    Plant Cell; 2007 Oct; 19(10):3001-18. PubMed ID: 17965274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maize rough sheath2 and its Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain knox gene silencing and determinacy during organogenesis.
    Phelps-Durr TL; Thomas J; Vahab P; Timmermans MC
    Plant Cell; 2005 Nov; 17(11):2886-98. PubMed ID: 16243907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leafbladeless1 is required for dorsoventrality of lateral organs in maize.
    Timmermans MC; Schultes NP; Jankovsky JP; Nelson T
    Development; 1998 Aug; 125(15):2813-23. PubMed ID: 9655804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mosaic analysis of the dominant mutant, Gnarley1-R, reveals distinct lateral and transverse signaling pathways during maize leaf development.
    Foster T; Veit B; Hake S
    Development; 1999 Jan; 126(2):305-13. PubMed ID: 9847244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Natural variation at sympathy for the ligule controls penetrance of the semidominant Liguleless narrow-R mutation in Zea mays.
    Buescher EM; Moon J; Runkel A; Hake S; Dilkes BP
    G3 (Bethesda); 2014 Oct; 4(12):2297-306. PubMed ID: 25344411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. KNOTTED1 Cofactors, BLH12 and BLH14, Regulate Internode Patterning and Vein Anastomosis in Maize.
    Tsuda K; Abraham-Juarez MJ; Maeno A; Dong Z; Aromdee D; Meeley R; Shiroishi T; Nonomura KI; Hake S
    Plant Cell; 2017 May; 29(5):1105-1118. PubMed ID: 28381444
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developmental regulation and significance of KNOX protein trafficking in Arabidopsis.
    Kim JY; Yuan Z; Jackson D
    Development; 2003 Sep; 130(18):4351-62. PubMed ID: 12900451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia.
    Timmermans MC; Hudson A; Becraft PW; Nelson T
    Science; 1999 Apr; 284(5411):151-3. PubMed ID: 10102816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. KNOX overexpression in transgenic Kohleria (Gesneriaceae) prolongs the activity of proximal leaf blastozones and drastically alters segment fate.
    Barth S; Geier T; Eimert K; Watillon B; Sangwan RS; Gleissberg S
    Planta; 2009 Nov; 230(6):1081-91. PubMed ID: 19685246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The making of a compound leaf: genetic manipulation of leaf architecture in tomato.
    Hareven D; Gutfinger T; Parnis A; Eshed Y; Lifschitz E
    Cell; 1996 Mar; 84(5):735-44. PubMed ID: 8625411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutator insertions in an intron of the maize knotted1 gene result in dominant suppressible mutations.
    Greene B; Walko R; Hake S
    Genetics; 1994 Dec; 138(4):1275-85. PubMed ID: 7896105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.