BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 19854918)

  • 41. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production.
    Sasano Y; Watanabe D; Ukibe K; Inai T; Ohtsu I; Shimoi H; Takagi H
    J Biosci Bioeng; 2012 Apr; 113(4):451-5. PubMed ID: 22178024
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound.
    Lin FM; Qiao B; Yuan YJ
    Appl Environ Microbiol; 2009 Jun; 75(11):3765-76. PubMed ID: 19363068
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Alcohol dehydrogenases from Scheffersomyces stipitis involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.
    Ma M; Wang X; Zhang X; Zhao X
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8411-25. PubMed ID: 23912116
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae.
    Jayakody LN; Horie K; Hayashi N; Kitagaki H
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6589-600. PubMed ID: 23744286
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance.
    Wang X; Liang Z; Hou J; Bao X; Shen Y
    BMC Biotechnol; 2016 Apr; 16():31. PubMed ID: 27036139
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways.
    Liu ZL; Ma M; Song M
    Mol Genet Genomics; 2009 Sep; 282(3):233-44. PubMed ID: 19517136
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.
    Henningsen BM; Hon S; Covalla SF; Sonu C; Argyros DA; Barrett TF; Wiswall E; Froehlich AC; Zelle RM
    Appl Environ Microbiol; 2015 Dec; 81(23):8108-17. PubMed ID: 26386051
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions.
    Tsuge Y; Hori Y; Kudou M; Ishii J; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2014 Oct; 98(20):8675-83. PubMed ID: 25112225
    [TBL] [Abstract][Full Text] [Related]  

  • 49. FudC, a protein primarily responsible for furfural detoxification in Corynebacterium glutamicum.
    Tsuge Y; Kudou M; Kawaguchi H; Ishii J; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2685-92. PubMed ID: 26541332
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation.
    Celton M; Sanchez I; Goelzer A; Fromion V; Camarasa C; Dequin S
    BMC Genomics; 2012 Jul; 13():317. PubMed ID: 22805527
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Discovery of new strains for furfural degradation using adaptive laboratory evolution in Saccharomyces cerevisiae.
    Wang H; Li Q; Zhang Z; Ayepa E; Xiang Q; Yu X; Zhao K; Zou L; Gu Y; Li X; Chen Q; Zhang X; Yang Y; Jin X; Yin H; Liu ZL; Tang T; Liu B; Ma M
    J Hazard Mater; 2023 Oct; 459():132090. PubMed ID: 37480608
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors.
    Liu ZL
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):27-36. PubMed ID: 17028874
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran.
    Liu ZL; Slininger PJ; Dien BS; Berhow MA; Kurtzman CP; Gorsich SW
    J Ind Microbiol Biotechnol; 2004 Sep; 31(8):345-52. PubMed ID: 15338422
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of furfural on anaerobic continuous cultivation of Saccharomyces cerevisiae.
    Horváth IS; Taherzadeh MJ; Niklasson C; Lidén G
    Biotechnol Bioeng; 2001 Dec; 75(5):540-9. PubMed ID: 11745129
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.
    Ishii J; Yoshimura K; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase.
    Li Q; Metthew Lam LK; Xun L
    Biodegradation; 2011 Nov; 22(6):1215-25. PubMed ID: 21526390
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrochemical probing of in vivo 5-hydroxymethyl furfural reduction in Saccharomyces cerevisiae.
    Kostesha NV; Almeida JR; Heiskanen AR; Gorwa-Grauslund MF; Hahn-Hägerdal B; Emnéus J
    Anal Chem; 2009 Dec; 81(24):9896-901. PubMed ID: 19925001
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Furfural and 5-hydroxymethyl-furfural degradation using recombinant manganese peroxidase.
    Yee KL; Jansen LE; Lajoie CA; Penner MH; Morse L; Kelly CJ
    Enzyme Microb Technol; 2018 Jan; 108():59-65. PubMed ID: 29108628
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Profiling of Saccharomyces cerevisiae transcription factors for engineering the resistance of yeast to lignocellulose-derived inhibitors in biomass conversion.
    Wu G; Xu Z; Jönsson LJ
    Microb Cell Fact; 2017 Nov; 16(1):199. PubMed ID: 29137634
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improved furfural tolerance in Escherichia coli mediated by heterologous NADH-dependent benzyl alcohol dehydrogenases.
    Willson BJ; Herman R; Langer S; Thomas GH
    Biochem J; 2022 May; 479(10):1045-1058. PubMed ID: 35502833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.