These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 19856276)
1. A bivariate survival model with compound Poisson frailty. Wienke A; Ripatti S; Palmgren J; Yashin A Stat Med; 2010 Jan; 29(2):275-83. PubMed ID: 19856276 [TBL] [Abstract][Full Text] [Related]
2. Meta-analysis of pairs of survival curves under heterogeneity: a Poisson correlated gamma-frailty approach. Fiocco M; Putter H; van Houwelingen JC Stat Med; 2009 Dec; 28(30):3782-97. PubMed ID: 19899066 [TBL] [Abstract][Full Text] [Related]
3. Long-term frailty modeling using a non-proportional hazards model: Application with a melanoma dataset. Calsavara VF; Milani EA; Bertolli E; Tomazella V Stat Methods Med Res; 2020 Aug; 29(8):2100-2118. PubMed ID: 31691640 [TBL] [Abstract][Full Text] [Related]
4. A bivariate frailty model with a cure fraction for modeling familial correlations in diseases. Wienke A; Lichtenstein P; Yashin AI Biometrics; 2003 Dec; 59(4):1178-83; discussion 1184-5. PubMed ID: 14969499 [TBL] [Abstract][Full Text] [Related]
5. Cancer incidence for Swedish twins studied by means of bivariate frailty models. Zahl PH; Harris JR Genet Epidemiol; 2000 Dec; 19(4):354-65. PubMed ID: 11108645 [TBL] [Abstract][Full Text] [Related]
6. A distribution for multivariate frailty based on the compound Poisson distribution with random scale. Moger TA; Aalen OO Lifetime Data Anal; 2005 Mar; 11(1):41-59. PubMed ID: 15747589 [TBL] [Abstract][Full Text] [Related]
7. Defective 3-parameter Gompertz model with frailty term for estimating cure fraction in survival data. Hajizadeh N; Baghestani AR; Pourhoseingholi MA; Khadem Maboudi AA J Biopharm Stat; 2023 Jan; 33(1):90-113. PubMed ID: 35671330 [TBL] [Abstract][Full Text] [Related]
8. Survival models induced by zero-modified power series discrete frailty: Application with a melanoma data set. Molina KC; Calsavara VF; Tomazella VD; Milani EA Stat Methods Med Res; 2021 Aug; 30(8):1874-1889. PubMed ID: 33955295 [TBL] [Abstract][Full Text] [Related]
9. A comparison of different bivariate correlated frailty models and estimation strategies. Wienke A; Arbeev KG; Locatelli I; Yashin AI Math Biosci; 2005 Nov; 198(1):1-13. PubMed ID: 16185720 [TBL] [Abstract][Full Text] [Related]
10. Dynamic frailty models based on compound birth-death processes. Putter H; van Houwelingen HC Biostatistics; 2015 Jul; 16(3):550-64. PubMed ID: 25681608 [TBL] [Abstract][Full Text] [Related]
11. Analysis of testicular cancer data using a frailty model with familial dependence. Moger TA; Aalen OO; Heimdal K; Gjessing HK Stat Med; 2004 Feb; 23(4):617-32. PubMed ID: 14755393 [TBL] [Abstract][Full Text] [Related]
12. Survival analysis of clinical mastitis data using a nested frailty Cox model fit as a mixed-effects Poisson model. Elghafghuf A; Dufour S; Reyher K; Dohoo I; Stryhn H Prev Vet Med; 2014 Dec; 117(3-4):456-68. PubMed ID: 25449735 [TBL] [Abstract][Full Text] [Related]
13. A bivariate joint frailty model with mixture framework for survival analysis of recurrent events with dependent censoring and cure fraction. Tawiah R; McLachlan GJ; Ng SK Biometrics; 2020 Sep; 76(3):753-766. PubMed ID: 31863594 [TBL] [Abstract][Full Text] [Related]
14. A new long-term survival model with dispersion induced by discrete frailty. Cancho VG; Macera MAC; Suzuki AK; Louzada F; Zavaleta KEC Lifetime Data Anal; 2020 Apr; 26(2):221-244. PubMed ID: 30968271 [TBL] [Abstract][Full Text] [Related]
15. Semiparametric frailty models for zero-inflated event count data in the presence of informative dropout. Diao G; Zeng D; Hu K; Ibrahim JG Biometrics; 2019 Dec; 75(4):1168-1178. PubMed ID: 31106400 [TBL] [Abstract][Full Text] [Related]
16. A flexible class of generalized joint frailty models for the analysis of survival endpoints. Chauvet J; Rondeau V Stat Med; 2023 Apr; 42(8):1233-1262. PubMed ID: 36775273 [TBL] [Abstract][Full Text] [Related]
17. On robustness of marginal regression coefficient estimates and hazard functions in multivariate survival analysis of family data when the frailty distribution is mis-specified. Hsu L; Gorfine M; Malone K Stat Med; 2007 Nov; 26(25):4657-78. PubMed ID: 17348081 [TBL] [Abstract][Full Text] [Related]
18. Hierarchical likelihood inference on clustered competing risks data. Christian NJ; Ha ID; Jeong JH Stat Med; 2016 Jan; 35(2):251-67. PubMed ID: 26278918 [TBL] [Abstract][Full Text] [Related]
19. Correlated gamma frailty models for bivariate survival time data. Martins A; Aerts M; Hens N; Wienke A; Abrams S Stat Methods Med Res; 2019; 28(10-11):3437-3450. PubMed ID: 30319043 [TBL] [Abstract][Full Text] [Related]
20. Maximum penalized likelihood estimation in a gamma-frailty model. Rondeau V; Commenges D; Joly P Lifetime Data Anal; 2003 Jun; 9(2):139-53. PubMed ID: 12735493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]