These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 19856952)

  • 1. Real-time TEM and kinetic Monte Carlo studies of the coalescence of decahedral gold nanoparticles.
    Lim TH; McCarthy D; Hendy SC; Stevens KJ; Brown SA; Tilley RD
    ACS Nano; 2009 Nov; 3(11):3809-13. PubMed ID: 19856952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticle formation in water-in-oil microemulsions: experiments, mechanism, and Monte Carlo simulation.
    Ethayaraja M; Dutta K; Muthukumaran D; Bandyopadhyaya R
    Langmuir; 2007 Mar; 23(6):3418-23. PubMed ID: 17305375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of gold nanoparticle aggregation: experiments and modeling.
    Kim T; Lee CH; Joo SW; Lee K
    J Colloid Interface Sci; 2008 Feb; 318(2):238-43. PubMed ID: 18022182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling micelle-templated mesoporous material SBA-15: atomistic model and gas adsorption studies.
    Bhattacharya S; Coasne B; Hung FR; Gubbins KE
    Langmuir; 2009 May; 25(10):5802-13. PubMed ID: 19099416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic modeling of CO(ad) monolayer oxidation on carbon-supported platinum nanoparticles.
    Andreaus B; Maillard F; Kocylo J; Savinova ER; Eikerling M
    J Phys Chem B; 2006 Oct; 110(42):21028-40. PubMed ID: 17048922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ TEM observation of the nucleation and growth of silver oxide nanoparticles.
    Li CM; Robertson IM; Jenkins ML; Hutchison JL; Doole RC
    Micron; 2005; 36(1):9-15. PubMed ID: 15582473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a monte carlo simulation study.
    Zhang SX; Gao J; Buchholz TA; Wang Z; Salehpour MR; Drezek RA; Yu TK
    Biomed Microdevices; 2009 Aug; 11(4):925-33. PubMed ID: 19381816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation.
    Zagaynova EV; Shirmanova MV; Kirillin MY; Khlebtsov BN; Orlova AG; Balalaeva IV; Sirotkina MA; Bugrova ML; Agrba PD; Kamensky VA
    Phys Med Biol; 2008 Sep; 53(18):4995-5009. PubMed ID: 18711247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of nanoparticle formation in self-assembled colloidal templates: population balance model and Monte Carlo simulation.
    Ethayaraja M; Dutta K; Bandyopadhyaya R
    J Phys Chem B; 2006 Aug; 110(33):16471-81. PubMed ID: 16913778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rate of two-dimensional nucleation: verifying classical and atomistic theories by Monte Carlo simulation.
    ter Horst JH; Kashchiev D
    J Phys Chem B; 2008 Jul; 112(29):8614-8. PubMed ID: 18588329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coagulation of nanoparticles in reverse micellar systems: a Monte Carlo model.
    Jain R; Shukla D; Mehra A
    Langmuir; 2005 Nov; 21(24):11528-33. PubMed ID: 16285836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling structure and morphology of CoPt nanoparticles through dynamical or static coalescence effects.
    Penuelas J; Andreazza P; Andreazza-Vignolle C; Tolentino HC; De Santis M; Mottet C
    Phys Rev Lett; 2008 Mar; 100(11):115502. PubMed ID: 18517793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of highly faceted pentagonal- and hexagonal-shaped gold nanoparticles with controlled sizes by sodium dodecyl sulfate.
    Kuo CH; Chiang TF; Chen LJ; Huang MH
    Langmuir; 2004 Aug; 20(18):7820-4. PubMed ID: 15323536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Population balance models and Monte Carlo simulation for nanoparticle formation in water-in-oil microemulsions: implications for CdS synthesis.
    Ethayaraja M; Bandyopadhyaya R
    J Am Chem Soc; 2006 Dec; 128(51):17102-13. PubMed ID: 17177463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic properties of van der Waals fluids from Monte Carlo simulations and perturbative Monte Carlo theory.
    Díez A; Largo J; Solana JR
    J Chem Phys; 2006 Aug; 125(7):074509. PubMed ID: 16942353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of branched gold nanocrystals by a seeding growth approach.
    Kuo CH; Huang MH
    Langmuir; 2005 Mar; 21(5):2012-6. PubMed ID: 15723503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of decanethiolate gold nanoparticles synthesized by one-phase and two-phase methods.
    Sun Y; Frenkel AI; White H; Zhang L; Zhu Y; Xu H; Yang JC; Koga T; Zaitsev V; Rafailovich MH; Sokolov JC
    J Phys Chem B; 2006 Nov; 110(46):23022-30. PubMed ID: 17107140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental verification of lung dose with radiochromic film: comparison with Monte Carlo simulations and commercially available treatment planning systems.
    Paelinck L; Reynaert N; Thierens H; De Neve W; De Wagter C
    Phys Med Biol; 2005 May; 50(9):2055-69. PubMed ID: 15843736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic Monte Carlo simulations compared with continuum models and experimental properties of pattern formation during ion beam sputtering.
    Chason E; Chan WL
    J Phys Condens Matter; 2009 Jun; 21(22):224016. PubMed ID: 21715754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New preparation method of gold nanoparticles on SiO2.
    Zanella R; Sandoval A; Santiago P; Basiuk VA; Saniger JM
    J Phys Chem B; 2006 May; 110(17):8559-65. PubMed ID: 16640406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.