These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 19856979)
1. Graphene oxide as an ideal substrate for hydrogen storage. Wang L; Lee K; Sun YY; Lucking M; Chen Z; Zhao JJ; Zhang SB ACS Nano; 2009 Oct; 3(10):2995-3000. PubMed ID: 19856979 [TBL] [Abstract][Full Text] [Related]
2. H2 storage materials (22 KJ/mol) using organometallic Ti fragments as sigma-H2 binding sites. Hamaed A; Trudeau M; Antonelli DM J Am Chem Soc; 2008 Jun; 130(22):6992-9. PubMed ID: 18461937 [TBL] [Abstract][Full Text] [Related]
3. Calculation of hydrogen storage capacity of metal-organic and covalent-organic frameworks by spillover. Suri M; Dornfeld M; Ganz E J Chem Phys; 2009 Nov; 131(17):174703. PubMed ID: 19895031 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen storage in chemically reducible mesoporous and microporous Ti oxides. Hu X; Skadtchenko BO; Trudeau M; Antonelli DM J Am Chem Soc; 2006 Sep; 128(36):11740-1. PubMed ID: 16953597 [TBL] [Abstract][Full Text] [Related]
5. Titanium-decorated graphene oxide for carbon monoxide capture and separation. Wang L; Zhao J; Wang L; Yan T; Sun YY; Zhang SB Phys Chem Chem Phys; 2011 Dec; 13(47):21126-31. PubMed ID: 22025026 [TBL] [Abstract][Full Text] [Related]
6. Hydrogen storage behavior of one-dimensional TiBx chains. Li F; Zhao J; Chen Z Nanotechnology; 2010 Apr; 21(13):134006. PubMed ID: 20208113 [TBL] [Abstract][Full Text] [Related]
7. First-principles study of hydrogen storage on Li12C60. Sun Q; Jena P; Wang Q; Marquez M J Am Chem Soc; 2006 Aug; 128(30):9741-5. PubMed ID: 16866529 [TBL] [Abstract][Full Text] [Related]
8. Ti-substituted boranes as hydrogen storage materials: a computational quest for the ideal combination of stable electronic structure and optimal hydrogen uptake. Zhang CG; Zhang R; Wang ZX; Zhou Z; Zhang SB; Chen Z Chemistry; 2009 Jun; 15(24):5910-9. PubMed ID: 19472230 [TBL] [Abstract][Full Text] [Related]
9. Binding energies of hydrogen molecules to isoreticular metal-organic framework materials. Sagara T; Klassen J; Ortony J; Ganz E J Chem Phys; 2005 Jul; 123(1):014701. PubMed ID: 16035857 [TBL] [Abstract][Full Text] [Related]
10. Ternary MgTiX-alloys: a promising route towards low-temperature, high-capacity, hydrogen-storage materials. Vermeulen P; van Thiel EF; Notten PH Chemistry; 2007; 13(35):9892-8. PubMed ID: 17879246 [TBL] [Abstract][Full Text] [Related]
11. Clustering of Ti on a C60 surface and its effect on hydrogen storage. Sun Q; Wang Q; Jena P; Kawazoe Y J Am Chem Soc; 2005 Oct; 127(42):14582-3. PubMed ID: 16231905 [TBL] [Abstract][Full Text] [Related]
12. Transition metal hydrazide-based hydrogen-storage materials: the first atoms-in-molecules analysis of the Kubas interaction. Skipper CV; Hoang TK; Antonelli DM; Kaltsoyannis N Chemistry; 2012 Feb; 18(6):1750-60. PubMed ID: 22238205 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen storage in low silica type X zeolites. Li Y; Yang RT J Phys Chem B; 2006 Aug; 110(34):17175-81. PubMed ID: 16928014 [TBL] [Abstract][Full Text] [Related]
14. New isoreticular metal-organic framework materials for high hydrogen storage capacity. Sagara T; Ortony J; Ganz E J Chem Phys; 2005 Dec; 123(21):214707. PubMed ID: 16356061 [TBL] [Abstract][Full Text] [Related]
15. Hydrogen storage in mesoporous titanium oxide-alkali fulleride composites. Hu X; Trudeau M; Antonelli DM Inorg Chem; 2008 Apr; 47(7):2477-84. PubMed ID: 18293916 [TBL] [Abstract][Full Text] [Related]
16. First-principles prediction of thermodynamically reversible hydrogen storage reactions in the Li-Mg-Ca-B-H system. Ozolins V; Majzoub EH; Wolverton C J Am Chem Soc; 2009 Jan; 131(1):230-7. PubMed ID: 19072157 [TBL] [Abstract][Full Text] [Related]
18. Hydrogen storage and the 18-electron rule. Kiran B; Kandalam AK; Jena P J Chem Phys; 2006 Jun; 124(22):224703. PubMed ID: 16784297 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous nitrogen doping and reduction of graphene oxide. Li X; Wang H; Robinson JT; Sanchez H; Diankov G; Dai H J Am Chem Soc; 2009 Nov; 131(43):15939-44. PubMed ID: 19817436 [TBL] [Abstract][Full Text] [Related]
20. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. Wang H; Casalongue HS; Liang Y; Dai H J Am Chem Soc; 2010 Jun; 132(21):7472-7. PubMed ID: 20443559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]