These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 19857201)
1. The oxyanion hole of Pseudomonas fluorescens mannitol 2-dehydrogenase: a novel structural motif for electrostatic stabilization in alcohol dehydrogenase active sites. Klimacek M; Nidetzky B Biochem J; 2009 Dec; 425(2):455-63. PubMed ID: 19857201 [TBL] [Abstract][Full Text] [Related]
2. A catalytic consensus motif for D-mannitol 2-dehydrogenase, a member of a polyol-specific long-chain dehydrogenase family, revealed by kinetic characterization of site-directed mutants of the enzyme from Pseudomonas fluorescens. Klimacek M; Nidetzky B Biochem J; 2002 Oct; 367(Pt 1):13-8. PubMed ID: 12175334 [TBL] [Abstract][Full Text] [Related]
3. Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens. Slatner M; Nidetzky B; Kulbe KD Biochemistry; 1999 Aug; 38(32):10489-98. PubMed ID: 10441145 [TBL] [Abstract][Full Text] [Related]
4. On the role of Brønsted catalysis in Pseudomonas fluorescens mannitol 2-dehydrogenase. Klimacek M; Kavanagh KL; Wilson DK; Nidetzky B Biochem J; 2003 Oct; 375(Pt 1):141-9. PubMed ID: 12826012 [TBL] [Abstract][Full Text] [Related]
5. From alcohol dehydrogenase to a "one-way" carbonyl reductase by active-site redesign: a mechanistic study of mannitol 2-dehydrogenase from pseudomonas fluorescens. Klimacek M; Nidetzky B J Biol Chem; 2010 Oct; 285(40):30644-53. PubMed ID: 20639204 [TBL] [Abstract][Full Text] [Related]
6. Examining the relative timing of hydrogen abstraction steps during NAD(+)-dependent oxidation of secondary alcohols catalyzed by long-chain D-mannitol dehydrogenase from Pseudomonas fluorescens using pH and kinetic isotope effects. Klimacek M; Nidetzky B Biochemistry; 2002 Aug; 41(31):10158-65. PubMed ID: 12146981 [TBL] [Abstract][Full Text] [Related]
7. The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation. Meriläinen G; Poikela V; Kursula P; Wierenga RK Biochemistry; 2009 Nov; 48(46):11011-25. PubMed ID: 19842716 [TBL] [Abstract][Full Text] [Related]
8. Amino acid residues in the nicotinamide binding site contribute to catalysis by horse liver alcohol dehydrogenase. Rubach JK; Plapp BV Biochemistry; 2003 Mar; 42(10):2907-15. PubMed ID: 12627956 [TBL] [Abstract][Full Text] [Related]
9. Structural and biochemical investigations of the catalytic mechanism of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans. Cobessi D; Tête-Favier F; Marchal S; Branlant G; Aubry A J Mol Biol; 2000 Jun; 300(1):141-52. PubMed ID: 10864505 [TBL] [Abstract][Full Text] [Related]
10. Structure-guided engineering of the coenzyme specificity of Pseudomonas fluorescens mannitol 2-dehydrogenase to enable efficient utilization of NAD(H) and NADP(H). Bubner P; Klimacek M; Nidetzky B FEBS Lett; 2008 Jan; 582(2):233-7. PubMed ID: 18082142 [TBL] [Abstract][Full Text] [Related]
11. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme. Karsten WE; Liu D; Rao GS; Harris BG; Cook PF Biochemistry; 2005 Mar; 44(9):3626-35. PubMed ID: 15736972 [TBL] [Abstract][Full Text] [Related]
12. Participation of histidine-51 in catalysis by horse liver alcohol dehydrogenase. LeBrun LA; Park DH; Ramaswamy S; Plapp BV Biochemistry; 2004 Mar; 43(11):3014-26. PubMed ID: 15023053 [TBL] [Abstract][Full Text] [Related]
13. Crystal structures of mouse class II alcohol dehydrogenase reveal determinants of substrate specificity and catalytic efficiency. Svensson S; Höög JO; Schneider G; Sandalova T J Mol Biol; 2000 Sep; 302(2):441-53. PubMed ID: 10970744 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of the hydride reduction of an NAD(+) analogue by isopropyl alcohol in aqueous and acetonitrile solutions: solvent effects, deuterium isotope effects, and mechanism. Lu Y; Qu F; Zhao Y; Small AM; Bradshaw J; Moore B J Org Chem; 2009 Sep; 74(17):6503-10. PubMed ID: 19670893 [TBL] [Abstract][Full Text] [Related]
15. The catalytic triad in Drosophila alcohol dehydrogenase: pH, temperature and molecular modelling studies. Winberg JO; Brendskag MK; Sylte I; Lindstad RI; McKinley-McKee JS J Mol Biol; 1999 Nov; 294(2):601-16. PubMed ID: 10610783 [TBL] [Abstract][Full Text] [Related]
16. The refined crystal structure of Drosophila lebanonensis alcohol dehydrogenase at 1.9 A resolution. Benach J; Atrian S; Gonzàlez-Duarte R; Ladenstein R J Mol Biol; 1998 Sep; 282(2):383-99. PubMed ID: 9735295 [TBL] [Abstract][Full Text] [Related]
17. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state. Nicolas A; Egmond M; Verrips CT; de Vlieg J; Longhi S; Cambillau C; Martinez C Biochemistry; 1996 Jan; 35(2):398-410. PubMed ID: 8555209 [TBL] [Abstract][Full Text] [Related]
18. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant. Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252 [TBL] [Abstract][Full Text] [Related]
19. Polyol-specific long-chain dehydrogenases/reductases of mannitol metabolism in Aspergillus fumigatus: biochemical characterization and pH studies of mannitol 2-dehydrogenase and mannitol-1-phosphate 5-dehydrogenase. Krahulec S; Armao GC; Bubner P; Klimacek M; Nidetzky B Chem Biol Interact; 2009 Mar; 178(1-3):274-82. PubMed ID: 18983992 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of Pseudomonas fluorescens mannitol 2-dehydrogenase: evidence for a very divergent long-chain dehydrogenase family. Kavanagh KL; Klimacek M; Nidetzky B; Wilson DK Chem Biol Interact; 2003 Feb; 143-144():551-8. PubMed ID: 12604241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]