BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 19857480)

  • 1. Study of cryopreservation of articular chondrocytes using the Taguchi method.
    Lyu SR; Wu WT; Hou CC; Hsieh WH
    Cryobiology; 2010 Apr; 60(2):165-76. PubMed ID: 19857480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of cryopreservation on human articular chondrocyte viability, proliferation, and collagen expression.
    Rendal-Vázquez ME; Maneiro-Pampín E; Rodríguez-Cabarcos M; Fernández-Mallo O; López de Ullibarri I; Andión-Núñez C; Blanco FJ
    Cryobiology; 2001 Feb; 42(1):2-10. PubMed ID: 11336484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryopreserved articular chondrocytes grow in culture, maintain cartilage phenotype, and synthesize matrix components.
    Schachar N; Nagao M; Matsuyama T; McAllister D; Ishii S
    J Orthop Res; 1989; 7(3):344-51. PubMed ID: 2703927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smooth muscle actin expression by human articular chondrocytes and their contraction of a collagen-glycosaminoglycan matrix in vitro.
    Kinner B; Spector M
    J Orthop Res; 2001 Mar; 19(2):233-41. PubMed ID: 11347696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Relationship between exposure time and cryopreservation of articular cartilage].
    Zhao QC; Zhou JS; Hu RQ
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2001 Jan; 15(1):46-8. PubMed ID: 12563931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations of low-temperature storage of articular cartilage for transplantation.
    Schachar NS; McGann LE
    Clin Orthop Relat Res; 1986 Jul; (208):146-50. PubMed ID: 3720115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryopreservation and biophysical properties of articular cartilage chondrocytes.
    Wu WT; Lyu SR; Hsieh WH
    Cryobiology; 2005 Dec; 51(3):330-8. PubMed ID: 16297378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple cryopreservation method for the maintenance of cell viability and mechanical integrity of a cultured cartilage analog.
    Oegema TR; Deloria LB; Fedewa MM; Bischof JC; Lewis JL
    Cryobiology; 2000 Jun; 40(4):370-5. PubMed ID: 10924268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viability, proliferation and phenotype maintenance in cryopreserved human iliac apophyseal chondrocytes.
    Rajagopal K; Chilbule SK; Madhuri V
    Cell Tissue Bank; 2014 Mar; 15(1):153-63. PubMed ID: 23934174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. bFGF influences human articular chondrocyte differentiation.
    Schmal H; Zwingmann J; Fehrenbach M; Finkenzeller G; Stark GB; Südkamp NP; Hartl D; Mehlhorn AT
    Cytotherapy; 2007; 9(2):184-93. PubMed ID: 17453970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryoprotectant agent toxicity in porcine articular chondrocytes.
    Jomha NM; Weiss AD; Fraser Forbes J; Law GK; Elliott JA; McGann LE
    Cryobiology; 2010 Dec; 61(3):297-302. PubMed ID: 20940008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of cryopreservation protocols for early stage zebrafish (Danio rerio) ovarian follicles using controlled slow cooling.
    Tsai S; Rawson DM; Zhang T
    Theriogenology; 2009 May; 71(8):1226-33. PubMed ID: 19250661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryopreservation and culture of human corneal keratocytes.
    Borderie VM; Lopez M; Lombet A; Carvajal-Gonzalez S; Cywiner C; Laroche L
    Invest Ophthalmol Vis Sci; 1998 Jul; 39(8):1511-9. PubMed ID: 9660502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sphingomyelinase decreases type II collagen expression in bovine articular cartilage chondrocytes via the ERK signaling pathway.
    Gilbert SJ; Blain EJ; Duance VC; Mason DJ
    Arthritis Rheum; 2008 Jan; 58(1):209-20. PubMed ID: 18163502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of viability during freeze-thaw of intact and adherent human embryonic stem cells with conventional slow-cooling protocols is predominantly due to apoptosis rather than cellular necrosis.
    Heng BC; Ye CP; Liu H; Toh WS; Rufaihah AJ; Yang Z; Bay BH; Ge Z; Ouyang HW; Lee EH; Cao T
    J Biomed Sci; 2006 May; 13(3):433-45. PubMed ID: 16374523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryopreservation of articular cartilage. Part 2: mechanisms of cryoinjury.
    Pegg DE; Wang L; Vaughan D; Hunt CJ
    Cryobiology; 2006 Jun; 52(3):347-59. PubMed ID: 16527262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryopreservation of zebrafish (Danio rerio) oocytes using improved controlled slow cooling protocols.
    Guan M; Rawson DM; Zhang T
    Cryobiology; 2008 Jun; 56(3):204-8. PubMed ID: 18433743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Immunohistochemical study of type I and type II collagen in the remodelling of the supraosseous tissue of mandibular condyle].
    Duan X; Mao Y; Wang H
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2000 Apr; 18(2):81-4. PubMed ID: 12539335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of 17beta-estradiol and insulin on type II collagen and protein synthesis of articular chondrocytes.
    Claassen H; Schlüter M; Schünke M; Kurz B
    Bone; 2006 Aug; 39(2):310-7. PubMed ID: 16631425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transplantation of articular cartilage following a step-cooling cryopreservation protocol.
    Muldrew K; Novak K; Studholme C; Wohl G; Zernicke R; Schachar NS; McGann LE
    Cryobiology; 2001 Nov; 43(3):260-7. PubMed ID: 11888219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.