These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 19857549)

  • 1. Morphology and cell classification of large neurons in the adult human dentate nucleus: a quantitative study.
    Milosević NT; Ristanović D; Marić DL; Rajković K
    Neurosci Lett; 2010 Jan; 468(1):59-63. PubMed ID: 19857549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology and classification of large neurons in the adult human dentate nucleus: a qualitative and quantitative analysis of 2D images.
    Ristanović D; Milosević NT; Stefanović BD; Marić DL; Rajković K
    Neurosci Res; 2010 May; 67(1):1-7. PubMed ID: 20079774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of fractal analysis to neuronal dendritic arborisation patterns of the monkey dentate nucleus.
    Milosević NT; Ristanović D; Gudović R; Rajković K; Marić D
    Neurosci Lett; 2007 Sep; 425(1):23-7. PubMed ID: 17723278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological development and maturation of granule neuron dendrites in the rat dentate gyrus.
    Rahimi O; Claiborne BJ
    Prog Brain Res; 2007; 163():167-81. PubMed ID: 17765718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the classification of normally distributed neurons: an application to human dentate nucleus.
    Ristanović D; Milošević NT; Marić DL
    Biol Cybern; 2011 Mar; 104(3):175-83. PubMed ID: 21340600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurons from the adult human dentate nucleus: neural networks in the neuron classification.
    Grbatinić I; Marić DL; Milošević NT
    J Theor Biol; 2015 Apr; 370():11-20. PubMed ID: 25640472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology of pontomedullary raphe and reticular formation neurons in the brainstem of the cat: an intracellular HRP study.
    Edwards DL; Johnston KM; Poletti CE; Foote WE
    J Comp Neurol; 1987 Feb; 256(2):257-73. PubMed ID: 3558881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological taxonomy of the neurons of the primate striatum.
    Yelnik J; François C; Percheron G; Tandé D
    J Comp Neurol; 1991 Nov; 313(2):273-94. PubMed ID: 1722488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructure of Golgi-impregnated and gold-toned neurons in the central nucleus of the inferior colliculus in the cat.
    Paloff AM; Usunoff KG; Hinova-Palova DV
    J Hirnforsch; 1992; 33(4-5):361-407. PubMed ID: 1282528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subclassification of neurons in the subthalamic nucleus of the lesser bushbaby (Galago senegalensis): a quantitative Golgi study using principal components analysis.
    Pearson JC; Norris JR; Phelps CH
    J Comp Neurol; 1985 Aug; 238(3):323-39. PubMed ID: 4044919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calretinin expression in hilar mossy cells of the hippocampal dentate gyrus of nonhuman primates and humans.
    Seress L; Abrahám H; Czéh B; Fuchs E; Léránth C
    Hippocampus; 2008; 18(4):425-34. PubMed ID: 18189312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel population of calretinin-positive neurons comprises reelin-positive Cajal-Retzius cells in the hippocampal formation of the adult domestic pig.
    Abrahám H; Tóth Z; Seress L
    Hippocampus; 2004; 14(3):385-401. PubMed ID: 15132437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological classification of the rat lateral cerebellar nuclear neurons by principal component analysis.
    Sultan F; Czubayko U; Thier P
    J Comp Neurol; 2003 Jan; 455(2):139-55. PubMed ID: 12454981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cocaine- and amphetamine-regulated transcript peptide (CART) is a selective marker of rat granule cells and of human mossy cells in the hippocampal dentate gyrus.
    Seress L; Abrahám H; Dóczi T; Lázár G; Kozicz T
    Neuroscience; 2004; 125(1):13-24. PubMed ID: 15051141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observations on the axonal and neuronal typology in the commissure of the inferior colliculus of the rabbit.
    Herrera M; Smith-Agreda V; Sanchez Del Campo F
    J Hirnforsch; 1985; 26(5):585-96. PubMed ID: 4086809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology of neurons in the thalamic reticular nucleus (TRN) of mammals as revealed by intracellular injections into fixed brain slices.
    Lübke J
    J Comp Neurol; 1993 Mar; 329(4):458-71. PubMed ID: 8454736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology and dendritic domains of neurons in the lateral parabrachial nucleus of the rat.
    Herbert H; Bellintani-Guardia B
    J Comp Neurol; 1995 Apr; 354(3):377-94. PubMed ID: 7608328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subclassification of neurons in the ventrobasal complex of the dog: quantitative Golgi study using principal components analysis.
    Harpring JE; Pearson JC; Norris JR; Mann BL
    J Comp Neurol; 1985 Dec; 242(2):230-46. PubMed ID: 2418071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of spiny and aspiny neurons in the caudate nucleus of the dog during the first postnatal month.
    Tanaka D
    J Comp Neurol; 1980 Jul; 192(2):247-63. PubMed ID: 7400398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The organization of afferents to the cerebellar cortex in the cat: projections from the deep cerebellar nuclei.
    Gould BB
    J Comp Neurol; 1979 Mar; 184(1):27-42. PubMed ID: 762281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.