These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 19857594)
21. Inventory and comparative evolution of the ABC superfamily in the genomes of Phytophthora ramorum and Phytophthora sojae. Morris PF; Phuntumart V J Mol Evol; 2009 May; 68(5):563-75. PubMed ID: 19407922 [TBL] [Abstract][Full Text] [Related]
22. Purification and characterization of the N-terminal nucleotide binding domain of an ABC drug transporter of Candida albicans: uncommon cysteine 193 of Walker A is critical for ATP hydrolysis. Jha S; Karnani N; Dhar SK; Mukhopadhayay K; Shukla S; Saini P; Mukhopadhayay G; Prasad R Biochemistry; 2003 Sep; 42(36):10822-32. PubMed ID: 12962507 [TBL] [Abstract][Full Text] [Related]
23. A specialized ABC efflux transporter GcABC-G1 confers monoterpene resistance to Grosmannia clavigera, a bark beetle-associated fungal pathogen of pine trees. Wang Y; Lim L; DiGuistini S; Robertson G; Bohlmann J; Breuil C New Phytol; 2013 Feb; 197(3):886-898. PubMed ID: 23252416 [TBL] [Abstract][Full Text] [Related]
24. The E-helix is a central core in a conserved helical bundle involved in nucleotide binding and transmembrane domain intercalation in the ABC transporter superfamily. Vishwakarma P; Banerjee A; Pasrija R; Prasad R; Lynn AM Int J Biol Macromol; 2019 Apr; 127():95-106. PubMed ID: 30639597 [TBL] [Abstract][Full Text] [Related]
25. An update on ABC transporters of filamentous fungi - from physiological substrates to xenobiotics. Víglaš J; Olejníková P Microbiol Res; 2021 May; 246():126684. PubMed ID: 33529790 [TBL] [Abstract][Full Text] [Related]
26. Conformational coupling of the nucleotide-binding and the transmembrane domains in ABC transporters. Wen PC; Tajkhorshid E Biophys J; 2011 Aug; 101(3):680-90. PubMed ID: 21806936 [TBL] [Abstract][Full Text] [Related]
27. Insight into pleiotropic drug resistance ATP-binding cassette pump drug transport through mutagenesis of Cdr1p transmembrane domains. Rawal MK; Khan MF; Kapoor K; Goyal N; Sen S; Saxena AK; Lynn AM; Tyndall JD; Monk BC; Cannon RD; Komath SS; Prasad R J Biol Chem; 2013 Aug; 288(34):24480-93. PubMed ID: 23824183 [TBL] [Abstract][Full Text] [Related]
28. Organization and function of the plant pleiotropic drug resistance ABC transporter family. Crouzet J; Trombik T; Fraysse AS; Boutry M FEBS Lett; 2006 Feb; 580(4):1123-30. PubMed ID: 16506311 [TBL] [Abstract][Full Text] [Related]
29. Pleiotropic effects of the vacuolar ABC transporter MLT1 of Candida albicans on cell function and virulence. Khandelwal NK; Kaemmer P; Förster TM; Singh A; Coste AT; Andes DR; Hube B; Sanglard D; Chauhan N; Kaur R; d'Enfert C; Mondal AK; Prasad R Biochem J; 2016 Jun; 473(11):1537-52. PubMed ID: 27026051 [TBL] [Abstract][Full Text] [Related]
30. Multidrug efflux pumps: substrate selection in ATP-binding cassette multidrug efflux pumps--first come, first served? Ernst R; Kueppers P; Stindt J; Kuchler K; Schmitt L FEBS J; 2010 Feb; 277(3):540-9. PubMed ID: 19961541 [TBL] [Abstract][Full Text] [Related]
31. Essential letters in the fungal alphabet: ABC and MFS transporters and their roles in survival and pathogenicity. Perlin MH; Andrews J; Toh SS Adv Genet; 2014; 85():201-53. PubMed ID: 24880736 [TBL] [Abstract][Full Text] [Related]
33. Learning the ABC of oral fungal drug resistance. Cannon RD; Holmes AR Mol Oral Microbiol; 2015 Dec; 30(6):425-37. PubMed ID: 26042641 [TBL] [Abstract][Full Text] [Related]
34. Molecular phylogenetic study and expression analysis of ATP-binding cassette transporter gene family in Oryza sativa in response to salt stress. Saha J; Sengupta A; Gupta K; Gupta B Comput Biol Chem; 2015 Feb; 54():18-32. PubMed ID: 25531538 [TBL] [Abstract][Full Text] [Related]
36. Characterization of the multi-drug efflux systems of pathogenic fungi using functional hyperexpression in Saccharomyces cerevisiae. Niimi M Nihon Ishinkin Gakkai Zasshi; 2010; 51(2):79-86. PubMed ID: 20467195 [TBL] [Abstract][Full Text] [Related]
37. Inhibitor-Resistant Mutants Give Important Insights into Candida albicans ABC Transporter Cdr1 Substrate Specificity and Help Elucidate Efflux Pump Inhibition. Niimi M; Niimi K; Tanabe K; Cannon RD; Lamping E Antimicrob Agents Chemother; 2022 Jan; 66(1):e0174821. PubMed ID: 34780272 [TBL] [Abstract][Full Text] [Related]
38. STB5 is a negative regulator of azole resistance in Candida glabrata. Noble JA; Tsai HF; Suffis SD; Su Q; Myers TG; Bennett JE Antimicrob Agents Chemother; 2013 Feb; 57(2):959-67. PubMed ID: 23229483 [TBL] [Abstract][Full Text] [Related]
39. Cdr1p highlights the role of the non-hydrolytic ATP-binding site in driving drug translocation in asymmetric ABC pumps. Banerjee A; Moreno A; Khan MF; Nair R; Sharma S; Sen S; Mondal AK; Pata J; Orelle C; Falson P; Prasad R Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183131. PubMed ID: 31734312 [TBL] [Abstract][Full Text] [Related]
40. ABC transporter Cdr1p harbors charged residues in the intracellular loop and nucleotide-binding domain critical for protein trafficking and drug resistance. Shah AH; Banerjee A; Rawal MK; Saxena AK; Mondal AK; Prasad R FEMS Yeast Res; 2015 Aug; 15(5):fov036. PubMed ID: 26048893 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]