BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 19857597)

  • 1. Intracellular pH regulation in isolated trout gill mitochondrion-rich (MR) cell subtypes: evidence for Na+/H+ activity.
    Parks SK; Tresguerres M; Galvez F; Goss GG
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Feb; 155(2):139-45. PubMed ID: 19857597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of sodium uptake in PNA negative MR cells from rainbow trout, Oncorhynchus mykiss as revealed by silver and copper inhibition.
    Goss G; Gilmour K; Hawkings G; Brumbach JH; Huynh M; Galvez F
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Jul; 159(3):234-41. PubMed ID: 21377535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Branchial expression and localization of SLC9A2 and SLC9A3 sodium/hydrogen exchangers and their possible role in acid-base regulation in freshwater rainbow trout (Oncorhynchus mykiss).
    Ivanis G; Esbaugh AJ; Perry SF
    J Exp Biol; 2008 Aug; 211(Pt 15):2467-77. PubMed ID: 18626081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between Na+ channels and Na+-HCO3- cotransporters in the freshwater fish gill MR cell: a model for transepithelial Na+ uptake.
    Parks SK; Tresguerres M; Goss GG
    Am J Physiol Cell Physiol; 2007 Feb; 292(2):C935-44. PubMed ID: 17005600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular mechanisms of Cl- transport in trout gill mitochondrion-rich cells.
    Parks SK; Tresguerres M; Goss GG
    Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R1161-9. PubMed ID: 19211727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization and characterization of phenamil-sensitive Na+ influx in isolated rainbow trout gill epithelial cells.
    Reid SD; Hawkings GS; Galvez F; Goss GG
    J Exp Biol; 2003 Feb; 206(Pt 3):551-9. PubMed ID: 12502776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+-H+ exchange activity in taste receptor cells.
    Vinnikova AK; Alam RI; Malik SA; Ereso GL; Feldman GM; McCarty JM; Knepper MA; Heck GL; DeSimone JA; Lyall V
    J Neurophysiol; 2004 Mar; 91(3):1297-313. PubMed ID: 14602837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium-sensitive and -insensitive copper accumulation by isolated intestinal cells of rainbow trout Oncorhynchus mykiss.
    Burke J; Handy RD
    J Exp Biol; 2005 Jan; 208(Pt 2):391-407. PubMed ID: 15634857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of Rhesus glycoproteins from an ammoniotelic teleost, the rainbow trout, using oocyte expression and SIET analysis.
    Nawata CM; Wood CM; O'Donnell MJ
    J Exp Biol; 2010 Apr; 213(Pt 7):1049-59. PubMed ID: 20228341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different mechanisms of Na
    Zimmer AM; Wilson JM; Wright PA; Hiroi J; Wood CM
    J Exp Biol; 2017 Mar; 220(Pt 5):775-786. PubMed ID: 27965271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular pH regulation in Hep G2 cells: effects of epidermal growth factor, transforming growth factor-alpha, and insulinlike growth factor-II on Na+/H+ exchange activity.
    Strazzabosco M; Poci C; Spirlì C; Zsembery A; Granato A; Massimino ML; Crepaldi G
    Hepatology; 1995 Aug; 22(2):588-97. PubMed ID: 7635429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of hepatocyte DNA synthesis by intracellular pH and its role in the action of tumor promoters.
    Lee CH; Cragoe EJ; Edwards AM
    J Cell Physiol; 2003 Apr; 195(1):61-9. PubMed ID: 12599209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of water chemistry and natural organic matter on active and passive uptake of inorganic mercury by gills of rainbow trout (Oncorhynchus mykiss).
    Klinck J; Dunbar M; Brown S; Nichols J; Winter A; Hughes C; Playle RC
    Aquat Toxicol; 2005 Mar; 72(1-2):161-75. PubMed ID: 15748754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seawater acclimation causes independent alterations in Na+/K+- and H+-ATPase activity in isolated mitochondria-rich cell subtypes of the rainbow trout gill.
    Hawkings GS; Galvez F; Goss GG
    J Exp Biol; 2004 Feb; 207(Pt 6):905-12. PubMed ID: 14766949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of sodium-hydrogen exchange activity in cardiac myocytes during acidosis and realkalinisation: effects on calcium, pHi, and cell shortening.
    Ward CA; Moffat MP
    Cardiovasc Res; 1995 Feb; 29(2):247-53. PubMed ID: 7736502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a branchial epithelial calcium channel (ECaC) in freshwater rainbow trout (Oncorhynchus mykiss).
    Shahsavarani A; McNeill B; Galvez F; Wood CM; Goss GG; Hwang PP; Perry SF
    J Exp Biol; 2006 May; 209(Pt 10):1928-43. PubMed ID: 16651558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in vitro biotic ligand model (BLM) for silver binding to cultured gill epithelia of freshwater rainbow trout (Oncorhynchus mykiss).
    Zhou B; Nichols J; Playle RC; Wood CM
    Toxicol Appl Pharmacol; 2005 Jan; 202(1):25-37. PubMed ID: 15589974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of gill mitochondria-rich cells in Mozambique tilapia exposed to acidic environments (pH 4.0) in combination with different salinities.
    Furukawa F; Watanabe S; Inokuchi M; Kaneko T
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Apr; 158(4):468-76. PubMed ID: 21147243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular pH regulation in rat Schwann cells.
    Nakhoul NL; Abdulnour-Nakhoul S; Khuri RN; Lieberman EM; Hargittai PT
    Glia; 1994 Mar; 10(3):155-64. PubMed ID: 8194859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium and calcium uptake in isolated mitochondria-rich cell populations from the gills of the freshwater rainbow trout.
    Galvez F; Wong D; Wood CM
    Am J Physiol Regul Integr Comp Physiol; 2006 Jul; 291(1):R170-6. PubMed ID: 16469841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.