BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 19857968)

  • 1. Antitumor antibiotic fostriecin covalently binds to cysteine-269 residue of protein phosphatase 2A catalytic subunit in mammalian cells.
    Takeuchi T; Takahashi N; Ishi K; Kusayanagi T; Kuramochi K; Sugawara F
    Bioorg Med Chem; 2009 Dec; 17(23):8113-22. PubMed ID: 19857968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-activity relationship studies of fostriecin, cytostatin, and key analogs, with PP1, PP2A, PP5, and( beta12-beta13)-chimeras (PP1/PP2A and PP5/PP2A), provide further insight into the inhibitory actions of fostriecin family inhibitors.
    Swingle MR; Amable L; Lawhorn BG; Buck SB; Burke CP; Ratti P; Fischer KL; Boger DL; Honkanen RE
    J Pharmacol Exp Ther; 2009 Oct; 331(1):45-53. PubMed ID: 19592665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phoslactomycin targets cysteine-269 of the protein phosphatase 2A catalytic subunit in cells.
    Teruya T; Simizu S; Kanoh N; Osada H
    FEBS Lett; 2005 Apr; 579(11):2463-8. PubMed ID: 15848189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antitumor drug fostriecin inhibits the mitotic entry checkpoint and protein phosphatases 1 and 2A.
    Roberge M; Tudan C; Hung SM; Harder KW; Jirik FR; Anderson H
    Cancer Res; 1994 Dec; 54(23):6115-21. PubMed ID: 7954457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fostriecin-mediated G2-M-phase growth arrest correlates with abnormal centrosome replication, the formation of aberrant mitotic spindles, and the inhibition of serine/threonine protein phosphatase activity.
    Cheng A; Balczon R; Zuo Z; Koons JS; Walsh AH; Honkanen RE
    Cancer Res; 1998 Aug; 58(16):3611-9. PubMed ID: 9721869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fostriecin: a review of the preclinical data.
    de Jong RS; de Vries EG; Mulder NH
    Anticancer Drugs; 1997 Jun; 8(5):413-8. PubMed ID: 9215602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalyst-controlled asymmetric synthesis of fostriecin and 8-epi-fostriecin.
    Maki K; Motoki R; Fujii K; Kanai M; Kobayashi T; Tamura S; Shibasaki M
    J Am Chem Soc; 2005 Dec; 127(48):17111-7. PubMed ID: 16316259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of covalently inhibited extracellular lipase from Streptomyces rimosus by matrix-assisted laser desorption/ionization time-of-flight and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight mass spectrometry: localization of the active site serine.
    Zehl M; Lescić I; Abramić M; Rizzi A; Kojić-Prodić B; Allmaier G
    J Mass Spectrom; 2004 Dec; 39(12):1474-83. PubMed ID: 15578758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamental role of the fostriecin unsaturated lactone and implications for selective protein phosphatase inhibition.
    Buck SB; Hardouin C; Ichikawa S; Soenen DR; Gauss CM; Hwang I; Swingle MR; Bonness KM; Honkanen RE; Boger DL
    J Am Chem Soc; 2003 Dec; 125(51):15694-5. PubMed ID: 14677930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Domains necessary for Galpha12 binding and stimulation of protein phosphatase-2A (PP2A): Is Galpha12 a novel regulatory subunit of PP2A?
    Zhu D; Tate RI; Ruediger R; Meigs TE; Denker BM
    Mol Pharmacol; 2007 May; 71(5):1268-76. PubMed ID: 17303700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fostriecin, an antitumor antibiotic with inhibitory activity against serine/threonine protein phosphatases types 1 (PP1) and 2A (PP2A), is highly selective for PP2A.
    Walsh AH; Cheng A; Honkanen RE
    FEBS Lett; 1997 Oct; 416(3):230-4. PubMed ID: 9373158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Total synthesis of an antitumor antibiotic, Fostriecin (CI-920).
    Miyashita K; Ikejiri M; Kawasaki H; Maemura S; Imanishi T
    J Am Chem Soc; 2003 Jul; 125(27):8238-43. PubMed ID: 12837094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of structural variation in 21 microcystins on their inhibition of PP2A and the effect of replacing cys269 with glycine.
    Ikehara T; Imamura S; Sano T; Nakashima J; Kuniyoshi K; Oshiro N; Yoshimoto M; Yasumoto T
    Toxicon; 2009 Sep; 54(4):539-44. PubMed ID: 19501114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A series of 6-(omega-methanesulfonylthioalkoxy)-2-N-methyl- 1,2,3, 4-tetrahydroisoquinolines: cysteine-reactive molecular yardsticks for probing alpha2-adrenergic receptors.
    Heinonen P; Koskua K; Pihlavisto M; Marjamäki A; Cockcroft V; Savola JM; Scheinin M; Lönnberg H
    Bioconjug Chem; 1998; 9(3):358-64. PubMed ID: 9576810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of PP2A, but not PP5, mediates p53 activation by low levels of okadaic acid in rat liver epithelial cells.
    Messner DJ; Romeo C; Boynton A; Rossie S
    J Cell Biochem; 2006 Sep; 99(1):241-55. PubMed ID: 16598789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of cysteinylation of pharmaceutical-grade human serum albumin by electrospray ionization mass spectrometry and low-energy collision-induced dissociation tandem mass spectrometry.
    Kleinova M; Belgacem O; Pock K; Rizzi A; Buchacher A; Allmaier G
    Rapid Commun Mass Spectrom; 2005; 19(20):2965-73. PubMed ID: 16178042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of proteins interacting with the catalytic subunit of PP2A by proteomics.
    Lee WJ; Kim DU; Lee MY; Choi KY
    Proteomics; 2007 Jan; 7(2):206-14. PubMed ID: 17163575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The predicted beta12-beta13 loop is important for inhibition of PP2Acalpha by the antitumor drug fostriecin.
    Evans DR; Simon JA
    FEBS Lett; 2001 Jun; 498(1):110-5. PubMed ID: 11389908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laccase-catalyzed polymerization of two phenolic compounds studied by matrix-assisted laser desorption/ionization time-of-flight and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry with collision-induced dissociation experiments.
    Marjasvaara A; Torvinen M; Kinnunen H; Vainiotalo P
    Biomacromolecules; 2006 May; 7(5):1604-9. PubMed ID: 16677045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis of guanine nucleotide dissociation inhibitor activity of human neuroglobin by chemical cross-linking and mass spectrometry.
    Kitatsuji C; Kurogochi M; Nishimura S; Ishimori K; Wakasugi K
    J Mol Biol; 2007 Apr; 368(1):150-60. PubMed ID: 17337004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.