These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 19859125)

  • 1. Transient photocurrents in photoconductive semiconductors generated by step-phase modulations.
    Davidson F; Wang CC; Trivedi S
    Opt Lett; 1995 Jan; 20(2):175-7. PubMed ID: 19859125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocurrents in photoconductive semiconductors generated by a moving space-charge field.
    Davidson FM; Wang CC; Field CT; Trivedi S
    Opt Lett; 1994 Apr; 19(7):478-80. PubMed ID: 19844346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple laser velocimeter that uses photoconductive semiconductors to measure optical frequency differences.
    Wang CC; Davidson F; Trivedi S
    Appl Opt; 1995 Oct; 34(28):6496-9. PubMed ID: 21060500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical phase-lock loops with photoconductive semiconductor phase detectors.
    Davidson F; Wang CC; Trivedi S
    Opt Lett; 1994 Jun; 19(11):774-6. PubMed ID: 19844441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photorefractivity and photocurrent dynamics of triphenylamine-based polymer composites.
    Tsutsumi N; Sassa T; Van Nguyen T; Tsujimura S; Ha GN; Mizuno Y; Jackin BJ; Kinashi K; Sakai W
    Sci Rep; 2024 May; 14(1):11286. PubMed ID: 38760467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent optical detection through two-wave mixing in photorefractive materials.
    Davidson F; Boutsikaris L; Krainak M
    Opt Lett; 1988 Jun; 13(6):506-8. PubMed ID: 19745947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracking Ultrafast Photocurrents in the Weyl Semimetal TaAs Using THz Emission Spectroscopy.
    Sirica N; Tobey RI; Zhao LX; Chen GF; Xu B; Yang R; Shen B; Yarotski DA; Bowlan P; Trugman SA; Zhu JX; Dai YM; Azad AK; Ni N; Qiu XG; Taylor AJ; Prasankumar RP
    Phys Rev Lett; 2019 May; 122(19):197401. PubMed ID: 31144919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Note: Coherent detection of terahertz radiation employing a continuous wave optical parametric source.
    Kiessling J; Sowade R; Mayorga IC; Buse K; Breunig I
    Rev Sci Instrum; 2011 Feb; 82(2):026108. PubMed ID: 21361647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulating spin-polarized photocurrents in 2D transition metal dichalcogenides.
    Xie L; Cui X
    Proc Natl Acad Sci U S A; 2016 Apr; 113(14):3746-50. PubMed ID: 27001834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum Carrier Reinvestment-induced ultrahigh and broadband photocurrent responses in graphene-silicon junctions.
    Liu F; Kar S
    ACS Nano; 2014 Oct; 8(10):10270-9. PubMed ID: 25325405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-modulation-induced two-wave mixing in semiconductors.
    Frey R; Frey J; Flytzanis C
    Opt Lett; 1997 Feb; 22(4):218-20. PubMed ID: 18183155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of terahertz pulse emission by optical nanoantenna.
    Park SG; Jin KH; Yi M; Ye JC; Ahn J; Jeong KH
    ACS Nano; 2012 Mar; 6(3):2026-31. PubMed ID: 22339093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Interference Control of Photocurrents in Semiconductors by Nonlinear Optical Absorption Processes.
    Wang K; Muniz RA; Sipe JE; Cundiff ST
    Phys Rev Lett; 2019 Aug; 123(6):067402. PubMed ID: 31491137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity.
    Yardimci NT; Cakmakyapan S; Hemmati S; Jarrahi M
    Sci Rep; 2017 Jun; 7(1):4166. PubMed ID: 28646225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the factors affecting the photoelectrode characteristics of a perylene/phthalocyanine bilayer working in the water phase.
    Abe T; Miyakushi S; Nagai K; Norimatsu T
    Phys Chem Chem Phys; 2008 Mar; 10(11):1562-8. PubMed ID: 18327312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stacked optical precursors from amplitude and phase modulations.
    Chen JF; Jeong H; Feng L; Loy MM; Wong GK; Du S
    Phys Rev Lett; 2010 Jun; 104(22):223602. PubMed ID: 20867168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors.
    Fortier TM; Roos PA; Jones DJ; Cundiff ST; Bhat RD; Sipe JE
    Phys Rev Lett; 2004 Apr; 92(14):147403. PubMed ID: 15089573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light.
    Zeringue C; Dajani I; Naderi S; Moore GT; Robin C
    Opt Express; 2012 Sep; 20(19):21196-213. PubMed ID: 23037244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical Control of Circular Photogalvanic Spin-Valley Photocurrent in a Monolayer Semiconductor.
    Liu L; Lenferink EJ; Wei G; Stanev TK; Speiser N; Stern NP
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3334-3341. PubMed ID: 30582322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steady-state characteristics and transient response of MgZnO-based metal-semiconductor-metal solar-blind ultraviolet photodetector with three types of electrode structures.
    Wang P; Zhen Q; Tang Q; Yang Y; Guo L; Ding K; Huang F
    Opt Express; 2013 Jul; 21(15):18387-97. PubMed ID: 23938710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.