These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 19859379)

  • 1. Multispecies Raman imaging in flames by use of an unintensified charge-coupled device.
    Wehrmeyer JA; Yeralan S; Tecu KS
    Opt Lett; 1995 Apr; 20(8):934-6. PubMed ID: 19859379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a backside-illuminated charge-coupled-device camera for single-pulse coherent anti-Stokes Raman spectroscopy N(2) thermometry.
    Plath I; Meier W; Stricker W
    Opt Lett; 1992 Jan; 17(1):79-81. PubMed ID: 19784236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a charge-coupled device camera for broadband coherent anti-Stokes Raman scattering measurements.
    Rakestraw DJ; Lucht RP; Dreier T
    Appl Opt; 1989 Oct; 28(19):4116-20. PubMed ID: 20555836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Background suppression for CARS thermometry in highly luminous flames using an electro-optical shutter.
    Senior WCB; Gejji RM; Gai T; Slabaugh CD; Lucht RP
    Opt Lett; 2023 Apr; 48(8):2010-2013. PubMed ID: 37058629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interline Transfer CCD Camera for Gated Broadband Coherent Anti-Stokes Raman-Scattering Measurements.
    Roy S; Ray G; Lucht RP
    Appl Opt; 2001 Nov; 40(33):6005-11. PubMed ID: 18364895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatially resolved multispecies and temperature analysis in hydrogen flames.
    Reckers W; Hüwel L; Grünefeld G; Andresen P
    Appl Opt; 1993 Feb; 32(6):907-24. PubMed ID: 20802766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Requirements for relative intensity correction of Raman spectra obtained by column-summing charge-coupled device data.
    Hurst WS; Choquette SJ; Etz ES
    Appl Spectrosc; 2007 Jul; 61(7):694-700. PubMed ID: 17697462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A matter of collection and detection for intraoperative and noninvasive near-infrared fluorescence molecular imaging: to see or not to see?
    Zhu B; Rasmussen JC; Sevick-Muraca EM
    Med Phys; 2014 Feb; 41(2):022105. PubMed ID: 24506637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous vibrational and pure rotational coherent anti-stokes Raman spectroscopy for temperature and multispecies concentration measurements demonstrated in sooting flames.
    Brackmann C; Bood J; Bengtsson PE; Seeger T; Schenk M; Leipertz A
    Appl Opt; 2002 Jan; 41(3):564-72. PubMed ID: 11905583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved multiple-pass Raman spectrometer.
    KC U; Silver JA; Hovde DC; Varghese PL
    Appl Opt; 2011 Aug; 50(24):4805-16. PubMed ID: 21857704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Camera technologies for low light imaging: overview and relative advantages.
    Moomaw B
    Methods Cell Biol; 2013; 114():243-83. PubMed ID: 23931510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of 266-nm and 355-nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by raman scattering.
    Egermann J; Seeger T; Leipertz A
    Appl Opt; 2004 Oct; 43(29):5564-74. PubMed ID: 15508615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fiber-bundle-based 2D Raman and Rayleigh imaging for major species and temperature measurement in laminar flames.
    Yu T; Yang C; Sharma P; AlRamadan AS; Magnotti G
    Opt Lett; 2022 Aug; 47(15):3764-3767. PubMed ID: 35913309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 10 kHz Shifted-Excitation Raman Difference Spectroscopy with Charge-Shifting Charge-Coupled Device Read-Out for Effective Mitigation of Dynamic Interfering Backgrounds.
    Mosca S; Sowoidnich K; Mehta M; Skinner WH; Gardner B; Palombo F; Stone N; Matousek P
    Appl Spectrosc; 2023 Jun; 77(6):569-582. PubMed ID: 37097820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman scattering measurements in flames using a tunable KrF excimer laser.
    Wehrmeyer JA; Cheng TS; Pitz RW
    Appl Opt; 1992 Apr; 31(10):1495-504. PubMed ID: 20720783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-pulse, simultaneous multipoint multispecies Raman measurements in turbulent nonpremixed jet flames.
    Nandula SP; Brown TM; Pitz RW; Debarber PA
    Opt Lett; 1994 Mar; 19(6):414-6. PubMed ID: 19829659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative imaging of temperature and OH in turbulent diffusion flames by using a single laser source.
    Kelman JB; Masri AR
    Appl Opt; 1994 Jun; 33(18):3992-9. PubMed ID: 20935746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional imaging of soot volume fraction in laminar diffusion flames.
    Snelling DR; Thomson KA; Smallwood GJ; Gülder OL
    Appl Opt; 1999 Apr; 38(12):2478-85. PubMed ID: 18319815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Measurement of OH* and CH* Chemiluminescence in Jet Diffusion Flames.
    Liu Y; Tan J; Wan M; Zhang L; Yao X
    ACS Omega; 2020 Jul; 5(26):15922-15930. PubMed ID: 32656412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiative Transport Based Flame Volume Reconstruction from Videos.
    Shen L; Zhu D; Nadeem S; Wang Z; Kaufman AE
    IEEE Trans Vis Comput Graph; 2018 Jul; 24(7):2209-2222. PubMed ID: 28600252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.