These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19859491)

  • 21. Lithium niobate channel waveguide at optical communication wavelength formed by multienergy implantation.
    Lu F; Fu G; Jia C; Wang K; Ma H; Shen D
    Opt Express; 2005 Nov; 13(23):9143-8. PubMed ID: 19503112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-mode light guiding in diamond waveguides directly written by a focused proton beam.
    Jin H; Turaga SP; Vanga SK; Bettiol AA
    Opt Lett; 2018 Jun; 43(11):2648-2651. PubMed ID: 29856384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Waveguiding properties in Yb:YAG crystals implanted with protons and carbon ions.
    Vázquez GV; Ramírez D; Márquez H; Flores-Romero E; Rickards J; Trejo-Luna R
    Appl Opt; 2012 Aug; 51(22):5573-8. PubMed ID: 22859050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation of a planar optical waveguide by mega-electron-volt He+ and P+ ions implanted in a BiB(3)O(6) crystal.
    Chen F; Hu H; Wang KM; Teng B; Wang JY; Lu QM; Shen DY
    Opt Lett; 2001 Dec; 26(24):1993-5. PubMed ID: 18059756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Waveguides in single-crystal lithium niobate thin film by proton exchange.
    Cai L; Han SL; Hu H
    Opt Express; 2015 Jan; 23(2):1240-8. PubMed ID: 25835882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical waveguides in Sn(2)P(2)S(6) by low fluence MeV He+ ion implantation.
    Guarino A; Jazbinsek M; Herzog C; Degl'innocenti R; Poberaj G; Günter P
    Opt Express; 2006 Mar; 14(6):2344-58. PubMed ID: 19503572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. UV second harmonic generation at 266 nm in He+ implanted beta-BaB2O4 optical waveguides.
    Degl'Innocenti R; Majkic A; Sulser F; Mutter L; Poberaj G; Günter P
    Opt Express; 2008 Jul; 16(15):11660-9. PubMed ID: 18648487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reconfigurable optical channel waveguides in lithium niobate crystals produced by combination of low-dose O3+ ion implantation and selective white light illumination.
    Tan Y; Chen F; Stepić M; Shandarov V; Kip D
    Opt Express; 2008 Jul; 16(14):10465-70. PubMed ID: 18607459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noncollinear optical frequency doubling in strontium barium niobate.
    Tunyagi AR; Ulex M; Betzler K
    Phys Rev Lett; 2003 Jun; 90(24):243901. PubMed ID: 12857192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-loss waveguides in a single-crystal lithium niobate thin film.
    Cai L; Wang Y; Hu H
    Opt Lett; 2015 Jul; 40(13):3013-6. PubMed ID: 26125355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation and characterization of a near-stoichiometric LiNbO3 waveguide by MeV oxygen implantation.
    Wang L; Lu QM
    Appl Opt; 2009 May; 48(14):2619-24. PubMed ID: 19424380
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Refractive micro-lenses and micro-axicons in single-crystal lithium niobate.
    Gorelick S; de Marco A
    Opt Express; 2018 Nov; 26(24):32324-32331. PubMed ID: 30650693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlation between photorefractive index changes and optical damage thresholds in z-cut proton-exchanged-LiNbO(3) waveguides.
    Luedtke F; Villarroel J; García-Cabañes A; Buse K; Carrascosa M
    Opt Express; 2009 Jan; 17(2):658-65. PubMed ID: 19158879
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical planar and ridge waveguides formed in Er
    You JL; Huang X; Lin SQ; Zhang LL; Fu LL; Yue QY; Lin SB; Liu CX
    Appl Opt; 2021 Oct; 60(29):9146-9150. PubMed ID: 34624007
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anisotropic model for the fabrication of annealed and reverse proton exchanged waveguides in congruent lithium niobate.
    Lenzini F; Kasture S; Haylock B; Lobino M
    Opt Express; 2015 Jan; 23(2):1748-56. PubMed ID: 25835930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing.
    Volk MF; Suntsov S; Rüter CE; Kip D
    Opt Express; 2016 Jan; 24(2):1386-91. PubMed ID: 26832519
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of photorefractive optical damage in lithium niobate: application to planar waveguides.
    Villarroel J; Carnicero J; Luedtke F; Carrascosa M; García-Cabañes A; Cabrera JM; Alcazar A; Ramiro B
    Opt Express; 2010 Sep; 18(20):20852-61. PubMed ID: 20940980
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical waveguides fabricated by ion implantation of Si(+) and N(+) in SiO(2): a Raman investigation.
    Ramabadran UB; Jackson HE; Boyd JT
    Appl Opt; 1993 Jan; 32(3):313-7. PubMed ID: 20802691
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Observation of bright spatial photorefractive solitons in a planar strontium barium niobate waveguide.
    Kip D; Wesner M; Shandarov V; Moretti P
    Opt Lett; 1998 Jun; 23(12):921-3. PubMed ID: 18087384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon ion implanted Nd:MgO:LiNbO(3) optical channel waveguides: an intermediate step between light and heavy ion implanted waveguides.
    Dong NN; Chen F; Jaque D
    Opt Express; 2010 Mar; 18(6):5951-6. PubMed ID: 20389614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.