These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 19859550)
1. Quantitative assessment of stereotyped and challenged locomotion after lesion of the striatum: a 3D kinematic study in rats. Perrot O; Laroche D; Pozzo T; Marie C PLoS One; 2009 Oct; 4(10):e7616. PubMed ID: 19859550 [TBL] [Abstract][Full Text] [Related]
2. Differential activity-dependent development of corticospinal control of movement and final limb position during visually guided locomotion. Friel KM; Drew T; Martin JH J Neurophysiol; 2007 May; 97(5):3396-406. PubMed ID: 17376849 [TBL] [Abstract][Full Text] [Related]
3. A region in the dorsolateral striatum of the rat exhibiting single-unit correlations with specific locomotor limb movements. West MO; Carelli RM; Pomerantz M; Cohen SM; Gardner JP; Chapin JK; Woodward DJ J Neurophysiol; 1990 Oct; 64(4):1233-46. PubMed ID: 2258744 [TBL] [Abstract][Full Text] [Related]
4. Neurons in area 5 of the posterior parietal cortex in the cat contribute to interlimb coordination during visually guided locomotion: a role in working memory. Lajoie K; Andujar JE; Pearson K; Drew T J Neurophysiol; 2010 Apr; 103(4):2234-54. PubMed ID: 20386041 [TBL] [Abstract][Full Text] [Related]
5. Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking. Trank TV; Chen C; Smith JL J Neurophysiol; 1996 Oct; 76(4):2316-26. PubMed ID: 8899606 [TBL] [Abstract][Full Text] [Related]
6. Kinematics of obstacle clearance in the rat. Perrot O; Laroche D; Pozzo T; Marie C Behav Brain Res; 2011 Oct; 224(2):241-9. PubMed ID: 21704082 [TBL] [Abstract][Full Text] [Related]
7. Lesion in the lateral cerebellum specifically produces overshooting of the toe trajectory in leading forelimb during obstacle avoidance in the rat. Aoki S; Sato Y; Yanagihara D J Neurophysiol; 2013 Oct; 110(7):1511-24. PubMed ID: 23615542 [TBL] [Abstract][Full Text] [Related]
8. Optic flow contribution to locomotion adjustments in obstacle avoidance. Pinheiro Menuchi MR; Bucken Gobbi LT Motor Control; 2012 Oct; 16(4):506-20. PubMed ID: 23162065 [TBL] [Abstract][Full Text] [Related]
9. Neural responses in multiple basal ganglia regions following unilateral dopamine depletion in behaving rats performing a treadmill locomotion task. Chang JY; Shi LH; Luo F; Woodward DJ Exp Brain Res; 2006 Jun; 172(2):193-207. PubMed ID: 16369786 [TBL] [Abstract][Full Text] [Related]
10. Modular organization of muscle activity patterns in the leading and trailing limbs during obstacle clearance in healthy adults. MacLellan MJ Exp Brain Res; 2017 Jul; 235(7):2011-2026. PubMed ID: 28343307 [TBL] [Abstract][Full Text] [Related]
11. Performance of locomotion and foot grasping following a unilateral thoracic corticospinal tract lesion in monkeys (Macaca mulatta). Courtine G; Roy RR; Raven J; Hodgson J; McKay H; Yang H; Zhong H; Tuszynski MH; Edgerton VR Brain; 2005 Oct; 128(Pt 10):2338-58. PubMed ID: 16049043 [TBL] [Abstract][Full Text] [Related]
12. Task specific adaptations in rat locomotion: runway versus horizontal ladder. Bolton DA; Tse AD; Ballermann M; Misiaszek JE; Fouad K Behav Brain Res; 2006 Apr; 168(2):272-9. PubMed ID: 16406145 [TBL] [Abstract][Full Text] [Related]
13. Lesions of area 5 of the posterior parietal cortex in the cat produce errors in the accuracy of paw placement during visually guided locomotion. Lajoie K; Drew T J Neurophysiol; 2007 Mar; 97(3):2339-54. PubMed ID: 17215501 [TBL] [Abstract][Full Text] [Related]
14. A kinematic and kinetic analysis of locomotion during voluntary gait modification in the cat. Lavoie S; McFadyen B; Drew T Exp Brain Res; 1995; 106(1):39-56. PubMed ID: 8542976 [TBL] [Abstract][Full Text] [Related]
15. Children use different anticipatory control strategies than adults to circumvent an obstacle in the travel path. Vallis LA; McFadyen BJ Exp Brain Res; 2005 Nov; 167(1):119-27. PubMed ID: 16177831 [TBL] [Abstract][Full Text] [Related]
16. Tuning of a basic coordination pattern constructs straight-ahead and curved walking in humans. Courtine G; Schieppati M J Neurophysiol; 2004 Apr; 91(4):1524-35. PubMed ID: 14668296 [TBL] [Abstract][Full Text] [Related]
17. Manipulating sensory information: obstacle crossing strategies between typically developing children and young adults. Rapos V; Cinelli M Exp Brain Res; 2020 Feb; 238(2):513-523. PubMed ID: 31960105 [TBL] [Abstract][Full Text] [Related]
18. Obstacle avoidance during locomotion using haptic information in normally sighted humans. Patla AE; Davies TC; Niechwiej E Exp Brain Res; 2004 Mar; 155(2):173-85. PubMed ID: 14770274 [TBL] [Abstract][Full Text] [Related]
19. The effect of gait speed on three-dimensional analysis of hindlimb kinematics during treadmill locomotion in rats. Costa LM; Pereira JE; Filipe VM; Couto PA; Magalhães LG; Bulas-Cruz J; Maurício AC; Geuna S; Varejão AS Rev Neurosci; 2010; 21(6):487-97. PubMed ID: 21438195 [TBL] [Abstract][Full Text] [Related]
20. The quality of visual information about the lower extremities influences visuomotor coordination during virtual obstacle negotiation. Kim A; Kretch KS; Zhou Z; Finley JM J Neurophysiol; 2018 Aug; 120(2):839-847. PubMed ID: 29742030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]