These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 19859587)

  • 1. Metal nanoparticles or metal oxide nanoparticles, an efficient and promising family of novel heterogeneous catalysts in organic synthesis.
    Wang S; Wang Z; Zha Z
    Dalton Trans; 2009 Nov; (43):9363-73. PubMed ID: 19859587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.
    Park YJ; Park JW; Jun CH
    Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis.
    Astruc D; Lu F; Aranzaes JR
    Angew Chem Int Ed Engl; 2005 Dec; 44(48):7852-72. PubMed ID: 16304662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability.
    Narayanan R; El-Sayed MA
    J Phys Chem B; 2005 Jul; 109(26):12663-76. PubMed ID: 16852568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modular, active, and robust Lewis acid catalysts supported on a metal-organic framework.
    Tanabe KK; Cohen SM
    Inorg Chem; 2010 Jul; 49(14):6766-74. PubMed ID: 20565054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles.
    Niederberger M; Garnweitner G
    Chemistry; 2006 Sep; 12(28):7282-302. PubMed ID: 16927442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable green catalysis by supported metal nanoparticles.
    Fukuoka A; Dhepe PL
    Chem Rec; 2009; 9(4):224-35. PubMed ID: 19701957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Latest developments in the catalytic application of nanoscaled neutral group 8-10 metals.
    Zhu Y; Lee CN; Kemp RA; Hosmane NS; Maguire JA
    Chem Asian J; 2008 Apr; 3(4):650-62. PubMed ID: 18348146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of the surface science of catalysis from single crystals to metal nanoparticles under pressure.
    Somorjai GA; Park JY
    J Chem Phys; 2008 May; 128(18):182504. PubMed ID: 18532789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A general synthetic strategy for oxide-supported metal nanoparticle catalysts.
    Zheng N; Stucky GD
    J Am Chem Soc; 2006 Nov; 128(44):14278-80. PubMed ID: 17076500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent progress in asymmetric bifunctional catalysis using multimetallic systems.
    Shibasaki M; Kanai M; Matsunaga S; Kumagai N
    Acc Chem Res; 2009 Aug; 42(8):1117-27. PubMed ID: 19435320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloidal metal nanoparticles as a component of designed catalyst.
    Jia CJ; Schüth F
    Phys Chem Chem Phys; 2011 Feb; 13(7):2457-87. PubMed ID: 21246127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the structural and surface properties of transition-metal nanoparticles in ionic liquids.
    Dupont J; Scholten JD
    Chem Soc Rev; 2010 May; 39(5):1780-804. PubMed ID: 20419219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precision control of radical polymerization via transition metal catalysis: from dormant species to designed catalysts for precision functional polymers.
    Ouchi M; Terashima T; Sawamoto M
    Acc Chem Res; 2008 Sep; 41(9):1120-32. PubMed ID: 18793026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral gold nanoparticles.
    Gautier C; Bürgi T
    Chemphyschem; 2009 Feb; 10(3):483-92. PubMed ID: 19142928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cobalt-rhodium heterobimetallic nanoparticle-catalyzed reactions.
    Park JH; Chung YK
    Dalton Trans; 2008 May; (18):2369-78. PubMed ID: 18461188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic-liquid-grafted rigid poly(p-phenylene) microspheres: efficient heterogeneous media for metal scavenging and catalysis.
    Li S; Wang J; Kou Y; Zhang S
    Chemistry; 2010 Feb; 16(6):1812-8. PubMed ID: 20029923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution of model catalytic systems; studies of structure, bonding and dynamics from single crystal metal surfaces to nanoparticles, and from low pressure (<10(-3) Torr) to high pressure (>10(-3) Torr) to liquid interfaces.
    Somorjai GA; York RL; Butcher D; Park JY
    Phys Chem Chem Phys; 2007 Jul; 9(27):3500-13. PubMed ID: 17612717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress in design and architecture of metal nanoparticles for catalytic applications.
    Mori K; Yamashita H
    Phys Chem Chem Phys; 2010 Nov; 12(43):14420-32. PubMed ID: 20882227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of microemulsion variables on copper oxide nanoparticle uptake by AOT microemulsions.
    Nassar NN; Husein MM
    J Colloid Interface Sci; 2007 Dec; 316(2):442-50. PubMed ID: 17889890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.