These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 19859812)

  • 41. Macro-to-micro interfaces for microfluidic devices.
    Fredrickson CK; Fan ZH
    Lab Chip; 2004 Dec; 4(6):526-33. PubMed ID: 15570361
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pressure driven digital logic in PDMS based microfluidic devices fabricated by multilayer soft lithography.
    Devaraju NS; Unger MA
    Lab Chip; 2012 Nov; 12(22):4809-15. PubMed ID: 23000861
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Micro/Nanofluidic device for single-cell-based assay.
    Yun KS; Yoon E
    Biomed Microdevices; 2005 Mar; 7(1):35-40. PubMed ID: 15834518
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modular design of paper based switches for autonomous lab-on paper micro devices.
    Patil Y; Dotseth K; Shapiro T; Pushparajan D; Binderup S; Horn JR; Korampally V
    Biomed Microdevices; 2020 Nov; 23(1):1. PubMed ID: 33247780
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electromechanical properties of pressure-actuated poly(dimethylsiloxane) microfluidic push-down valves.
    Chen H; Gu W; Cellar N; Kennedy R; Takayama S; Meiners JC
    Anal Chem; 2008 Aug; 80(15):6110-3. PubMed ID: 18576665
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A microfluidic multi-injector for gradient generation.
    Chung BG; Lin F; Jeon NL
    Lab Chip; 2006 Jun; 6(6):764-8. PubMed ID: 16738728
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pressure-driven laminar flow switching for rapid exchange of solution environment around surface adhered biological particles.
    Allen PB; Milne G; Doepker BR; Chiu DT
    Lab Chip; 2010 Mar; 10(6):727-33. PubMed ID: 20221560
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Detecting and Trapping of a Single C. elegans Worm in a Microfluidic Chip for Automated Microplate Dispensing.
    Desta IT; Al-Sharif A; AlGharibeh N; Mustafa N; Orozaliev A; Giakoumidis N; Gunsalus KC; Song YA
    SLAS Technol; 2017 Aug; 22(4):431-436. PubMed ID: 27630097
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Control of soft machines using actuators operated by a Braille display.
    Mosadegh B; Mazzeo AD; Shepherd RF; Morin SA; Gupta U; Sani IZ; Lai D; Takayama S; Whitesides GM
    Lab Chip; 2014 Jan; 14(1):189-99. PubMed ID: 24196070
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cross-talk problem on a fluorescence multi-channel microfluidic chip system.
    Irawan R; Tjin SC; Yager P; Zhang D
    Biomed Microdevices; 2005 Sep; 7(3):205-11. PubMed ID: 16133808
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microfabricaton of microfluidic check valves using comb-shaped moving plug for suppression of backflow in microchannel.
    Hyeon J; So H
    Biomed Microdevices; 2019 Feb; 21(1):19. PubMed ID: 30790045
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A disposable on-chip microvalve and pump for programmable microfluidics.
    Im SB; Uddin MJ; Jin GJ; Shim JS
    Lab Chip; 2018 May; 18(9):1310-1319. PubMed ID: 29619470
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A microfluidic manipulator for enrichment and alignment of moving cells and particles.
    Chen HH; Sun B; Tran KK; Shen H; Gao D
    J Biomech Eng; 2009 Jul; 131(7):074505. PubMed ID: 19640141
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ionogel-based light-actuated valves for controlling liquid flow in micro-fluidic manifolds.
    Benito-Lopez F; Byrne R; Răduţă AM; Vrana NE; McGuinness G; Diamond D
    Lab Chip; 2010 Jan; 10(2):195-201. PubMed ID: 20066247
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-sensitivity miniaturized immunoassays for tumor necrosis factor alpha using microfluidic systems.
    Cesaro-Tadic S; Dernick G; Juncker D; Buurman G; Kropshofer H; Michel B; Fattinger C; Delamarche E
    Lab Chip; 2004 Dec; 4(6):563-9. PubMed ID: 15570366
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Screen printing of solder resist as master substrates for fabrication of multi-level microfluidic channels and flask-shaped microstructures for cell-based applications.
    Yue W; Li CW; Xu T; Yang M
    Biosens Bioelectron; 2013 Mar; 41():675-83. PubMed ID: 23122749
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fabrication of microfluidic devices containing patterned microwell arrays.
    Henley WH; Dennis PJ; Ramsey JM
    Anal Chem; 2012 Feb; 84(3):1776-80. PubMed ID: 22242542
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Programmable v-type valve for cell and particle manipulation in microfluidic devices.
    Rho HS; Yang Y; Hanke AT; Ottens M; Terstappen LW; Gardeniers H
    Lab Chip; 2016 Jan; 16(2):305-11. PubMed ID: 26648416
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pressure-actuated microfluidic devices for electrophoretic separation of pre-term birth biomarkers.
    Sahore V; Kumar S; Rogers CI; Jensen JK; Sonker M; Woolley AT
    Anal Bioanal Chem; 2016 Jan; 408(2):599-607. PubMed ID: 26537925
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design and fabrication of chemically robust three-dimensional microfluidic valves.
    Maltezos G; Garcia E; Hanrahan G; Gomez FA; Vyawahare S; van Dam RM; Chen Y; Scherer A
    Lab Chip; 2007 Sep; 7(9):1209-11. PubMed ID: 17713623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.