These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 19859826)

  • 1. Structural genomics target selection for the New York consortium on membrane protein structure.
    Punta M; Love J; Handelman S; Hunt JF; Shapiro L; Hendrickson WA; Rost B
    J Struct Funct Genomics; 2009 Dec; 10(4):255-68. PubMed ID: 19859826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The New York Consortium on Membrane Protein Structure (NYCOMPS): a high-throughput platform for structural genomics of integral membrane proteins.
    Love J; Mancia F; Shapiro L; Punta M; Rost B; Girvin M; Wang DN; Zhou M; Hunt JF; Szyperski T; Gouaux E; MacKinnon R; McDermott A; Honig B; Inouye M; Montelione G; Hendrickson WA
    J Struct Funct Genomics; 2010 Sep; 11(3):191-9. PubMed ID: 20690043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defining the fold space of membrane proteins: the CAMPS database.
    Martin-Galiano AJ; Frishman D
    Proteins; 2006 Sep; 64(4):906-22. PubMed ID: 16802318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TSTMP: target selection for structural genomics of human transmembrane proteins.
    Varga J; Dobson L; Reményi I; Tusnády GE
    Nucleic Acids Res; 2017 Jan; 45(D1):D325-D330. PubMed ID: 27924015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis and "expression space" coverage of the production of prokaryotic membrane proteins for structural genomics.
    Surade S; Klein M; Stolt-Bergner PC; Muenke C; Roy A; Michel H
    Protein Sci; 2006 Sep; 15(9):2178-89. PubMed ID: 16943447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR in structural genomics to increase structural coverage of the protein universe: Delivered by Prof. Kurt Wüthrich on 7 July 2013 at the 38th FEBS Congress in St. Petersburg, Russia.
    Serrano P; Dutta SK; Proudfoot A; Mohanty B; Susac L; Martin B; Geralt M; Jaroszewski L; Godzik A; Elsliger M; Wilson IA; Wüthrich K
    FEBS J; 2016 Nov; 283(21):3870-3881. PubMed ID: 27154589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A survey of integral alpha-helical membrane proteins.
    Kelly L; Pieper U; Eswar N; Hays FA; Li M; Roe-Zurz Z; Kroetz DL; Giacomini KM; Stroud RM; Sali A
    J Struct Funct Genomics; 2009 Dec; 10(4):269-80. PubMed ID: 19760129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A De-Novo Genome Analysis Pipeline (DeNoGAP) for large-scale comparative prokaryotic genomics studies.
    Thakur S; Guttman DS
    BMC Bioinformatics; 2016 Jun; 17(1):260. PubMed ID: 27363390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural genomics of Mycobacterium tuberculosis: a preliminary report of progress at UCLA.
    Goulding CW; Perry LJ; Anderson D; Sawaya MR; Cascio D; Apostol MI; Chan S; Parseghian A; Wang SS; Wu Y; Cassano V; Gill HS; Eisenberg D
    Biophys Chem; 2003 Sep; 105(2-3):361-70. PubMed ID: 14499904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a comprehensive structural coverage of completed genomes: a structural genomics viewpoint.
    Marsden RL; Lewis TA; Orengo CA
    BMC Bioinformatics; 2007 Mar; 8():86. PubMed ID: 17349043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target selection and deselection at the Berkeley Structural Genomics Center.
    Chandonia JM; Kim SH; Brenner SE
    Proteins; 2006 Feb; 62(2):356-70. PubMed ID: 16276528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive analysis of the numbers, lengths and amino acid compositions of transmembrane helices in prokaryotic, eukaryotic and viral integral membrane proteins of high-resolution structure.
    Saidijam M; Azizpour S; Patching SG
    J Biomol Struct Dyn; 2018 Feb; 36(2):443-464. PubMed ID: 28150531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coverage of protein sequence space by current structural genomics targets.
    O'Toole N; Raymond S; Cygler M
    J Struct Funct Genomics; 2003; 4(2-3):47-55. PubMed ID: 14649288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implications of structural genomics target selection strategies: Pfam5000, whole genome, and random approaches.
    Chandonia JM; Brenner SE
    Proteins; 2005 Jan; 58(1):166-79. PubMed ID: 15521074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional coverage of the human genome by existing structures, structural genomics targets, and homology models.
    Xie L; Bourne PE
    PLoS Comput Biol; 2005 Aug; 1(3):e31. PubMed ID: 16118666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MODBASE, a database of annotated comparative protein structure models, and associated resources.
    Pieper U; Eswar N; Braberg H; Madhusudhan MS; Davis FP; Stuart AC; Mirkovic N; Rossi A; Marti-Renom MA; Fiser A; Webb B; Greenblatt D; Huang CC; Ferrin TE; Sali A
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D217-22. PubMed ID: 14681398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target selection for structural genomics: an overview.
    Marsden RL; Orengo CA
    Methods Mol Biol; 2008; 426():3-25. PubMed ID: 18542854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput computational and experimental techniques in structural genomics.
    Chance MR; Fiser A; Sali A; Pieper U; Eswar N; Xu G; Fajardo JE; Radhakannan T; Marinkovic N
    Genome Res; 2004 Oct; 14(10B):2145-54. PubMed ID: 15489337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural genomics plucks high-hanging membrane proteins.
    Kloppmann E; Punta M; Rost B
    Curr Opin Struct Biol; 2012 Jun; 22(3):326-32. PubMed ID: 22622032
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.