These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 19859848)

  • 1. Unsteady state flow and stagnation in distribution systems affect the biological stability of drinking water.
    Manuel CM; Nunes OC; Melo LF
    Biofouling; 2010; 26(2):129-39. PubMed ID: 19859848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of drinking water biofilm in flow/non-flow conditions.
    Manuel CM; Nunes OC; Melo LF
    Water Res; 2007 Feb; 41(3):551-62. PubMed ID: 17184812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drinking water biofilm assessment of total and culturable bacteria under different operating conditions.
    Simões LC; Azevedo N; Pacheco A; Keevil CW; Vieira MJ
    Biofouling; 2006; 22(1-2):91-9. PubMed ID: 16581673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors affecting bulk to total bacteria ratio in drinking water distribution systems.
    Srinivasan S; Harrington GW; Xagoraraki I; Goel R
    Water Res; 2008 Jul; 42(13):3393-404. PubMed ID: 18541283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of discontinuous chlorination on microbial production by drinking water biofilms.
    Codony F; Morató J; Mas J
    Water Res; 2005 May; 39(9):1896-906. PubMed ID: 15899288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of flow regimes on the presence of Legionella within the biofilm of a model plumbing system.
    Liu Z; Lin YE; Stout JE; Hwang CC; Vidic RD; Yu VL
    J Appl Microbiol; 2006 Aug; 101(2):437-42. PubMed ID: 16882152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of changing water flow velocity on the formation of biofilms and water quality in pilot distribution system consisting of copper or polyethylene pipes.
    Lehtola MJ; Laxander M; Miettinen IT; Hirvonen A; Vartiainen T; Martikainen PJ
    Water Res; 2006 Jun; 40(11):2151-60. PubMed ID: 16725175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of wall shear rate on biofilm deposition and grazing in drinking water flow chambers.
    Paris T; Skali-Lami S; Block JC
    Biotechnol Bioeng; 2007 Aug; 97(6):1550-61. PubMed ID: 17216655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control methods of the microbial water quality in dental unit waterlines.
    Szymanska J
    Ann Agric Environ Med; 2003; 10(1):1-4. PubMed ID: 12852726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disinfectant efficacy of chlorite and chlorine dioxide in drinking water biofilms.
    Gagnon GA; Rand JL; O'leary KC; Rygel AC; Chauret C; Andrews RC
    Water Res; 2005 May; 39(9):1809-17. PubMed ID: 15899279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial groundwater treatment: biofilm activity and organic carbon removal performance.
    Långmark J; Storey MV; Ashbolt NJ; Stenström TA
    Water Res; 2004 Feb; 38(3):740-8. PubMed ID: 14723944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A centralised, automated dental hospital water quality and biofilm management system using neutral Ecasol maintains dental unit waterline output at better than potable quality: a 2-year longitudinal study.
    O'Donnell MJ; Boyle M; Swan J; Russell RJ; Coleman DC
    J Dent; 2009 Oct; 37(10):748-62. PubMed ID: 19573971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible shift in the alpha-, beta- and gamma-proteobacteria populations of drinking water biofilms during discontinuous chlorination.
    Mathieu L; Bouteleux C; Fass S; Angel E; Block JC
    Water Res; 2009 Aug; 43(14):3375-86. PubMed ID: 19539973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biofilm responses to ageing and to a high phosphate load in a bench-scale drinking water system.
    Batté M; Koudjonou B; Laurent P; Mathieu L; Coallier J; Prévost M
    Water Res; 2003 Mar; 37(6):1351-61. PubMed ID: 12598197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of active bacterial communities in a model drinking water biofilm system using 16S rRNA-based clone libraries.
    Keinänen-Toivola MM; Revetta RP; Santo Domingo JW
    FEMS Microbiol Lett; 2006 Apr; 257(2):182-8. PubMed ID: 16553851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes.
    Lehtola MJ; Miettinen IT; Keinänen MM; Kekki TK; Laine O; Hirvonen A; Vartiainen T; Martikainen PJ
    Water Res; 2004 Oct; 38(17):3769-79. PubMed ID: 15350429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new coupon design for simultaneous analysis of in situ microbial biofilm formation and community structure in drinking water distribution systems.
    Deines P; Sekar R; Husband PS; Boxall JB; Osborn AM; Biggs CA
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):749-56. PubMed ID: 20300747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial community structure and biomass in developing drinking water biofilms.
    Keinänen MM; Martikainen PJ; Kontro MH
    Can J Microbiol; 2004 Mar; 50(3):183-91. PubMed ID: 15105885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison between standard culture and peptide nucleic acid 16S rRNA hybridization quantification to study the influence of physico-chemical parameters on Legionella pneumophila survival in drinking water biofilms.
    Gião MS; Wilks SA; Azevedo NF; Vieira MJ; Keevil CW
    Biofouling; 2009; 25(4):343-51. PubMed ID: 19241231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of oxalic acid on the regrowth of heterotrophic bacteria in the distributed drinking water.
    Chu C; Lu C
    Chemosphere; 2004 Nov; 57(7):531-9. PubMed ID: 15488914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.