BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 19859947)

  • 1. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme.
    Zacharaki EI; Wang S; Chawla S; Soo Yoo D; Wolf R; Melhem ER; Davatzikos C
    Magn Reson Med; 2009 Dec; 62(6):1609-18. PubMed ID: 19859947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of MR morphologic, diffusion tensor, and perfusion imaging in the classification of brain tumors using machine learning scheme.
    Shrot S; Salhov M; Dvorski N; Konen E; Averbuch A; Hoffmann C
    Neuroradiology; 2019 Jul; 61(7):757-765. PubMed ID: 30949746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilevel analysis of spatiotemporal association features for differentiation of tumor enhancement patterns in breast DCE-MRI.
    Lee SH; Kim JH; Cho N; Park JS; Yang Z; Jung YS; Moon WK
    Med Phys; 2010 Aug; 37(8):3940-56. PubMed ID: 20879557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating machine learning techniques for MRI-based classification of brain neoplasms.
    Zacharaki EI; Kanas VG; Davatzikos C
    Int J Comput Assist Radiol Surg; 2011 Nov; 6(6):821-8. PubMed ID: 21516321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glioma grading using a machine-learning framework based on optimized features obtained from T
    Sengupta A; Ramaniharan AK; Gupta RK; Agarwal S; Singh A
    J Magn Reson Imaging; 2019 Oct; 50(4):1295-1306. PubMed ID: 30895704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant soft-tissue tumors in T1-MRI images.
    Juntu J; Sijbers J; De Backer S; Rajan J; Van Dyck D
    J Magn Reson Imaging; 2010 Mar; 31(3):680-9. PubMed ID: 20187212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning methods for the classification of gliomas: Initial results using features extracted from MR spectroscopy.
    Ranjith G; Parvathy R; Vikas V; Chandrasekharan K; Nair S
    Neuroradiol J; 2015 Apr; 28(2):106-11. PubMed ID: 25923676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MR image segmentation using phase information and a novel multiscale scheme.
    Bourgeat P; Fripp J; Stanwell P; Ramadan S; Ourselin S
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):920-7. PubMed ID: 17354861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
    De Martino F; Valente G; Staeren N; Ashburner J; Goebel R; Formisano E
    Neuroimage; 2008 Oct; 43(1):44-58. PubMed ID: 18672070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on the segmentation of MRI image based on multi-classification support vector machine.
    Guo L; Liu X; Wu Y; Yan W; Shen X
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6020-3. PubMed ID: 18003386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive modeling in glioma grading from MR perfusion images using support vector machines.
    Emblem KE; Zoellner FG; Tennoe B; Nedregaard B; Nome T; Due-Tonnessen P; Hald JK; Scheie D; Bjornerud A
    Magn Reson Med; 2008 Oct; 60(4):945-52. PubMed ID: 18816815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-grade (WHO II) and anaplastic (WHO III) gliomas: differences in morphology and MRI signal intensities.
    Schäfer ML; Maurer MH; Synowitz M; Wüstefeld J; Marnitz T; Streitparth F; Wiener E
    Eur Radiol; 2013 Oct; 23(10):2846-53. PubMed ID: 23686293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated detection of prostatic adenocarcinoma from high-resolution ex vivo MRI.
    Madabhushi A; Feldman MD; Metaxas DN; Tomaszeweski J; Chute D
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1611-25. PubMed ID: 16350920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging biomarker analysis of advanced multiparametric MRI for glioma grading.
    Vamvakas A; Williams SC; Theodorou K; Kapsalaki E; Fountas K; Kappas C; Vassiou K; Tsougos I
    Phys Med; 2019 Apr; 60():188-198. PubMed ID: 30910431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features.
    Zhang X; Yan LF; Hu YC; Li G; Yang Y; Han Y; Sun YZ; Liu ZC; Tian Q; Han ZY; Liu LD; Hu BQ; Qiu ZY; Wang W; Cui GB
    Oncotarget; 2017 Jul; 8(29):47816-47830. PubMed ID: 28599282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnostic performance of texture analysis on MRI in grading cerebral gliomas.
    Skogen K; Schulz A; Dormagen JB; Ganeshan B; Helseth E; Server A
    Eur J Radiol; 2016 Apr; 85(4):824-9. PubMed ID: 26971430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A wavelet-based optimal texture feature set for classification of brain tumours.
    Sasikala M; Kumaravel N
    J Med Eng Technol; 2008; 32(3):198-205. PubMed ID: 18432467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI.
    Nie K; Chen JH; Yu HJ; Chu Y; Nalcioglu O; Su MY
    Acad Radiol; 2008 Dec; 15(12):1513-25. PubMed ID: 19000868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of structural images via high-dimensional image warping, robust feature extraction, and SVM.
    Fan Y; Shen D; Davatzikos C
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):1-8. PubMed ID: 16685822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. COMPARE: classification of morphological patterns using adaptive regional elements.
    Fan Y; Shen D; Gur RC; Gur RE; Davatzikos C
    IEEE Trans Med Imaging; 2007 Jan; 26(1):93-105. PubMed ID: 17243588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.