These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 19859959)
1. Percutaneous versus surgical delivery of autologous myoblasts after chronic myocardial infarction: an in vivo cardiovascular magnetic resonance study. Larose E; Proulx G; Voisine P; Rodés-Cabau J; De Larochellière R; Rossignol G; Bertrand OF; Tremblay JP Catheter Cardiovasc Interv; 2010 Jan; 75(1):120-7. PubMed ID: 19859959 [TBL] [Abstract][Full Text] [Related]
2. A comparison between percutaneous and surgical transplantation of autologous skeletal myoblasts in a swine model of chronic myocardial infarction. Gavira JJ; Perez-Ilzarbe M; Abizanda G; García-Rodríguez A; Orbe J; Páramo JA; Belzunce M; Rábago G; Barba J; Herreros J; Panizo A; de Jalón JA; Martínez-Caro D; Prósper F Cardiovasc Res; 2006 Sep; 71(4):744-53. PubMed ID: 16843451 [TBL] [Abstract][Full Text] [Related]
3. Improved diastolic function after myoblast transplantation in a model of ischemia-infarction. Pätilä T; Ikonen T; Kankuri E; Uutela A; Lommi J; Krogerus L; Salmenperä P; Bizik J; Lauerma K; Harjula A Scand Cardiovasc J; 2009 Apr; 43(2):100-9. PubMed ID: 19016109 [TBL] [Abstract][Full Text] [Related]
4. Intracoronary administration of bone marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-segment elevation myocardial infarction: results of the Reinfusion of Enriched Progenitor cells And Infarct Remodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy. Dill T; Schächinger V; Rolf A; Möllmann S; Thiele H; Tillmanns H; Assmus B; Dimmeler S; Zeiher AM; Hamm C Am Heart J; 2009 Mar; 157(3):541-7. PubMed ID: 19249426 [TBL] [Abstract][Full Text] [Related]
5. Administration of intracoronary bone marrow mononuclear cells on chronic myocardial infarction improves diastolic function. Yao K; Huang R; Qian J; Cui J; Ge L; Li Y; Zhang F; Shi H; Huang D; Zhang S; Sun A; Zou Y; Ge J Heart; 2008 Sep; 94(9):1147-53. PubMed ID: 18381377 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms of improvement of left ventricle remodeling by trans-planting two kinds of autologous bone marrow stem cells in pigs. Li SR; Qi XY; Hu FL; Zhang JQ; Wang TH; Dang Y; Meng CL; Liu HL; Li YX; Wu D; Dong J; Xun LY; Gao LH; Jin FC Chin Med J (Engl); 2008 Dec; 121(23):2403-9. PubMed ID: 19102957 [TBL] [Abstract][Full Text] [Related]
7. Effects of Tongxinluo-facilitated cellular cardiomyoplasty with autologous bone marrow-mesenchymal stem cells on postinfarct swine hearts. Qian HY; Yang YJ; Huang J; Gao RL; Dou KF; Yang GS; Li JJ; Shen R; He ZX; Lu MJ; Zhao SH Chin Med J (Engl); 2007 Aug; 120(16):1416-25. PubMed ID: 17825171 [TBL] [Abstract][Full Text] [Related]
8. Short- and long-term changes in myocardial function, morphology, edema, and infarct mass after ST-segment elevation myocardial infarction evaluated by serial magnetic resonance imaging. Ripa RS; Nilsson JC; Wang Y; Søndergaard L; Jørgensen E; Kastrup J Am Heart J; 2007 Nov; 154(5):929-36. PubMed ID: 17967600 [TBL] [Abstract][Full Text] [Related]
10. Left ventricular functional recovery with percutaneous, transvascular direct myocardial delivery of bone marrow-derived cells. Thompson CA; Reddy VK; Srinivasan A; Houser S; Hayase M; Davila A; Pomerantsev E; Vacanti JP; Gold HK J Heart Lung Transplant; 2005 Sep; 24(9):1385-92. PubMed ID: 16143261 [TBL] [Abstract][Full Text] [Related]
11. Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. Zeng L; Hu Q; Wang X; Mansoor A; Lee J; Feygin J; Zhang G; Suntharalingam P; Boozer S; Mhashilkar A; Panetta CJ; Swingen C; Deans R; From AH; Bache RJ; Verfaillie CM; Zhang J Circulation; 2007 Apr; 115(14):1866-75. PubMed ID: 17389266 [TBL] [Abstract][Full Text] [Related]
12. Novel regenerative therapy using cell-sheet covered with omentum flap delivers a huge number of cells in a porcine myocardial infarction model. Shudo Y; Miyagawa S; Fukushima S; Saito A; Shimizu T; Okano T; Sawa Y J Thorac Cardiovasc Surg; 2011 Nov; 142(5):1188-96. PubMed ID: 21924436 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous evaluation of infarct size and cardiac function in intact mice by contrast-enhanced cardiac magnetic resonance imaging reveals contractile dysfunction in noninfarcted regions early after myocardial infarction. Yang Z; Berr SS; Gilson WD; Toufektsian MC; French BA Circulation; 2004 Mar; 109(9):1161-7. PubMed ID: 14967719 [TBL] [Abstract][Full Text] [Related]
14. Repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction. Gavira JJ; Nasarre E; Abizanda G; Pérez-Ilzarbe M; de Martino-Rodriguez A; García de Jalón JA; Mazo M; Macias A; García-Bolao I; Pelacho B; Martínez-Caro D; Prósper F Eur Heart J; 2010 Apr; 31(8):1013-21. PubMed ID: 19700775 [TBL] [Abstract][Full Text] [Related]
15. Autologous skeletal myoblast transplantation improved hemodynamics and left ventricular function in chronic heart failure dogs. He KL; Yi GH; Sherman W; Zhou H; Zhang GP; Gu A; Kao R; Haimes HB; Harvey J; Roos E; White D; Taylor DA; Wang J; Burkhoff D J Heart Lung Transplant; 2005 Nov; 24(11):1940-9. PubMed ID: 16297802 [TBL] [Abstract][Full Text] [Related]
16. Effects of primary angioplasty for acute myocardial infarction on early and late infarct size and left ventricular wall characteristics. Baks T; van Geuns RJ; Biagini E; Wielopolski P; Mollet NR; Cademartiri F; van der Giessen WJ; Krestin GP; Serruys PW; Duncker DJ; de Feyter PJ J Am Coll Cardiol; 2006 Jan; 47(1):40-4. PubMed ID: 16386662 [TBL] [Abstract][Full Text] [Related]
17. Combined transplantation of skeletal myoblasts and angiopoietic progenitor cells reduces infarct size and apoptosis and improves cardiac function in chronic ischemic heart failure. Bonaros N; Rauf R; Wolf D; Margreiter E; Tzankov A; Schlechta B; Kocher A; Ott H; Schachner T; Hering S; Bonatti J; Laufer G J Thorac Cardiovasc Surg; 2006 Dec; 132(6):1321-8. PubMed ID: 17140950 [TBL] [Abstract][Full Text] [Related]
18. Randomized, controlled trial of intramuscular or intracoronary injection of autologous bone marrow cells into scarred myocardium during CABG versus CABG alone. Ang KL; Chin D; Leyva F; Foley P; Kubal C; Chalil S; Srinivasan L; Bernhardt L; Stevens S; Shenje LT; Galiñanes M Nat Clin Pract Cardiovasc Med; 2008 Oct; 5(10):663-70. PubMed ID: 18711405 [TBL] [Abstract][Full Text] [Related]
19. Is the measurement of left ventricular ejection fraction the proper end point for cell therapy trials? An analysis of the effect of bone marrow mononuclear stem cell administration on left ventricular ejection fraction after ST-segment elevation myocardial infarction when evaluated by cardiac magnetic resonance imaging. Traverse JH; Henry TD; Moye' LA Am Heart J; 2011 Oct; 162(4):671-7. PubMed ID: 21982659 [TBL] [Abstract][Full Text] [Related]
20. [Long term follow-up on emergent intracoronary autologous bone marrow mononuclear cell transplantation for acute inferior-wall myocardial infarction]. Huang RC; Yao K; Zou YZ; Ge L; Qian JY; Yang J; Yang S; Niu YH; Li YL; Zhang YQ; Zhang F; Xu SK; Zhang SH; Sun AJ; Ge JB Zhonghua Yi Xue Za Zhi; 2006 Apr; 86(16):1107-10. PubMed ID: 16796836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]