These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
489 related articles for article (PubMed ID: 19860153)
21. Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches. Baken S; Verbeeck M; Verheyen D; Diels J; Smolders E Water Res; 2015 Mar; 71():160-70. PubMed ID: 25616116 [TBL] [Abstract][Full Text] [Related]
22. Effects of electron acceptors on soluble reactive phosphorus in the overlying water during algal decomposition. Wang J; Jiang X; Zheng B; Niu Y; Wang K; Wang W; Kardol P Environ Sci Pollut Res Int; 2015 Dec; 22(24):19507-17. PubMed ID: 26263882 [TBL] [Abstract][Full Text] [Related]
23. Thin ferrihydrite sediment capping sequestrates phosphorus experiencing redox conditions in a shallow temperate lacustrine wetland. Zou Y; Grace MR; Roberts KL; Yu X Chemosphere; 2017 Oct; 185():673-680. PubMed ID: 28728124 [TBL] [Abstract][Full Text] [Related]
24. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Canfield DE; Thamdrup B; Hansen JW Geochim Cosmochim Acta; 1993 Aug; 57(16):3867-83. PubMed ID: 11537734 [TBL] [Abstract][Full Text] [Related]
25. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Egger M; Rasigraf O; Sapart CJ; Jilbert T; Jetten MS; Röckmann T; van der Veen C; Bândă N; Kartal B; Ettwig KF; Slomp CP Environ Sci Technol; 2015 Jan; 49(1):277-83. PubMed ID: 25412274 [TBL] [Abstract][Full Text] [Related]
26. Sulfur, iron, and phosphorus geochemistry in an intertidal mudflat impacted by shellfish aquaculture. Meng T; Zhu MX; Ma WW; Gan ZX Environ Sci Pollut Res Int; 2019 Mar; 26(7):6460-6471. PubMed ID: 30623326 [TBL] [Abstract][Full Text] [Related]
27. Dynamic characteristics of sulfur, iron and phosphorus in coastal polluted sediments, north China. Sun Q; Sheng Y; Yang J; Di Bonito M; Mortimer RJG Environ Pollut; 2016 Dec; 219():588-595. PubMed ID: 27344087 [TBL] [Abstract][Full Text] [Related]
28. Mechanisms driving phosphorus release during algal blooms based on hourly changes in iron and phosphorus concentrations in sediments. Chen M; Ding S; Chen X; Sun Q; Fan X; Lin J; Ren M; Yang L; Zhang C Water Res; 2018 Apr; 133():153-164. PubMed ID: 29407697 [TBL] [Abstract][Full Text] [Related]
29. Rapid and extensive alteration of phosphorus speciation during oxic storage of wet sediment samples. Kraal P; Slomp CP PLoS One; 2014; 9(5):e96859. PubMed ID: 24802813 [TBL] [Abstract][Full Text] [Related]
30. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks. Tangalos GE; Beard BL; Johnson CM; Alpers CN; Shelobolina ES; Xu H; Konishi H; Roden EE Geobiology; 2010 Jun; 8(3):197-208. PubMed ID: 20374296 [TBL] [Abstract][Full Text] [Related]
31. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray absorption fine structure spectroscopy. Li W; Joshi SR; Hou G; Burdige DJ; Sparks DL; Jaisi DP Environ Sci Technol; 2015 Jan; 49(1):203-11. PubMed ID: 25469633 [TBL] [Abstract][Full Text] [Related]
32. Biological rejuvenation of iron oxides in bioturbated marine sediments. Beam JP; Scott JJ; McAllister SM; Chan CS; McManus J; Meysman FJR; Emerson D ISME J; 2018 May; 12(5):1389-1394. PubMed ID: 29343830 [TBL] [Abstract][Full Text] [Related]
33. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges. Bravo AG; Bouchet S; Guédron S; Amouroux D; Dominik J; Zopfi J Water Res; 2015 Sep; 80():245-55. PubMed ID: 26005785 [TBL] [Abstract][Full Text] [Related]
34. Seasonal iron‑sulfur interactions and the stimulated phosphorus mobilization in freshwater lake sediments. Zhao Y; Wu S; Yu M; Zhang Z; Wang X; Zhang S; Wang G Sci Total Environ; 2021 May; 768():144336. PubMed ID: 33453539 [TBL] [Abstract][Full Text] [Related]
35. Phosphorus retention and release by sediments in the eutrophic Mai Po Marshes, Hong Kong. Lai DY; Lam KC Mar Pollut Bull; 2008; 57(6-12):349-56. PubMed ID: 18329050 [TBL] [Abstract][Full Text] [Related]
36. High-resolution imaging of labile phosphorus and its relationship with iron redox state in lake sediments. Gao Y; Liang T; Tian S; Wang L; Holm PE; Bruun Hansen HC Environ Pollut; 2016 Dec; 219():466-474. PubMed ID: 27376987 [TBL] [Abstract][Full Text] [Related]
37. Bacteria contribute to sediment nutrient release and reflect progressed eutrophication-driven hypoxia in an organic-rich continental sea. Sinkko H; Lukkari K; Sihvonen LM; Sivonen K; Leivuori M; Rantanen M; Paulin L; Lyra C PLoS One; 2013; 8(6):e67061. PubMed ID: 23825619 [TBL] [Abstract][Full Text] [Related]
38. Dissimilatory nitrate reduction to ammonium (DNRA) potentially facilitates the accumulation of phosphorus in lake water from sediment. Yuan H; Jia B; Zeng Q; Zhou Y; Wu J; Wang H; Fang H; Cai Y; Li Q Chemosphere; 2022 Sep; 303(Pt 1):134664. PubMed ID: 35460675 [TBL] [Abstract][Full Text] [Related]
39. Enhancement of sediment phosphorus release during a tunnel construction across an urban lake (Lake Donghu, China). Wang S; Li H; Xiao J; Zhou Y; Song C; Bi Y; Cao X Environ Sci Pollut Res Int; 2016 Sep; 23(17):17774-83. PubMed ID: 27250085 [TBL] [Abstract][Full Text] [Related]
40. Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction. Wankel SD; Adams MM; Johnston DT; Hansel CM; Joye SB; Girguis PR Environ Microbiol; 2012 Oct; 14(10):2726-40. PubMed ID: 22827909 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]