BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 19860410)

  • 1. "Hairy" poly(3-hexylthiophene) particles prepared via surface-initiated Kumada catalyst-transfer polycondensation.
    Senkovskyy V; Tkachov R; Beryozkina T; Komber H; Oertel U; Horecha M; Bocharova V; Stamm M; Gevorgyan SA; Krebs FC; Kiriy A
    J Am Chem Soc; 2009 Nov; 131(45):16445-53. PubMed ID: 19860410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface engineering using Kumada catalyst-transfer polycondensation (KCTP): preparation and structuring of poly(3-hexylthiophene)-based graft copolymer brushes.
    Khanduyeva N; Senkovskyy V; Beryozkina T; Horecha M; Stamm M; Uhrich C; Riede M; Leo K; Kiriy A
    J Am Chem Soc; 2009 Jan; 131(1):153-61. PubMed ID: 19128176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of TiO2-poly(3-hexylthiophene) hybrid particles through surface-initiated Kumada catalyst-transfer polycondensation.
    Boon F; Moerman D; Laurencin D; Richeter S; Guari Y; Mehdi A; Dubois P; Lazzaroni R; Clément S
    Langmuir; 2014 Sep; 30(38):11340-7. PubMed ID: 25188446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random catalyst walking along polymerized poly(3-hexylthiophene) chains in Kumada catalyst-transfer polycondensation.
    Tkachov R; Senkovskyy V; Komber H; Sommer JU; Kiriy A
    J Am Chem Soc; 2010 Jun; 132(22):7803-10. PubMed ID: 20465260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of poly(3-hexylthiophene) grafted TiO2 nanotube composite.
    Lu MD; Yang SM
    J Colloid Interface Sci; 2009 May; 333(1):128-34. PubMed ID: 19246046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-confinement induced chain alignment in ordered P3HT nanostructures defined by nanoimprint lithography.
    Aryal M; Trivedi K; Hu WW
    ACS Nano; 2009 Oct; 3(10):3085-90. PubMed ID: 19731931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of thiophene- and furan-appended methanofullerenes with poly(3-hexylthiophene) in organic solar cells.
    Troshin PA; Khakina EA; Egginger M; Goryachev AE; Troyanov SI; Fuchsbauer A; Peregudov AS; Lyubovskaya RN; Razumov VF; Sariciftci NS
    ChemSusChem; 2010 Mar; 3(3):356-66. PubMed ID: 20077464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microparticle-supported conjugated polyelectrolyte brushes prepared by surface-initiated kumada catalyst transfer polycondensation for sensor applications.
    Tkachov R; Senkovskyy V; Oertel U; Synytska A; Horecha M; Kiriy A
    Macromol Rapid Commun; 2010 Dec; 31(24):2146-50. PubMed ID: 21567643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-initiated poly(3-methylthiophene) as a hole-transport layer for polymer solar cells with high performance.
    Yang L; Sontag SK; LaJoie TW; Li W; Huddleston NE; Locklin J; You W
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5069-73. PubMed ID: 22974192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalyst-transfer polycondensation. mechanism of Ni-catalyzed chain-growth polymerization leading to well-defined poly(3-hexylthiophene).
    Miyakoshi R; Yokoyama A; Yokozawa T
    J Am Chem Soc; 2005 Dec; 127(49):17542-7. PubMed ID: 16332106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the role of single regiodefects and polydispersity in regioregular poly(3-hexylthiophene): defect distribution, synthesis of defect-free chains, and a simple model for the determination of crystallinity.
    Kohn P; Huettner S; Komber H; Senkovskyy V; Tkachov R; Kiriy A; Friend RH; Steiner U; Huck WT; Sommer JU; Sommer M
    J Am Chem Soc; 2012 Mar; 134(10):4790-805. PubMed ID: 22329563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Palladium-catalyzed dehydrohalogenative polycondensation of 2-bromo-3-hexylthiophene: an efficient approach to head-to-tail poly(3-hexylthiophene).
    Wang Q; Takita R; Kikuzaki Y; Ozawa F
    J Am Chem Soc; 2010 Aug; 132(33):11420-1. PubMed ID: 20684550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-initiated Kumada catalyst-transfer polycondensation of poly(9,9-dioctylfluorene) from organosilica particles: chain-confinement promoted beta-phase formation.
    Tkachov R; Senkovskyy V; Horecha M; Oertel U; Stamm M; Kiriy A
    Chem Commun (Camb); 2010 Mar; 46(9):1425-7. PubMed ID: 20162136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-confined nickel mediated cross-coupling reactions: characterization of initiator environment in Kumada catalyst-transfer polycondensation.
    Sontag SK; Sheppard GR; Usselman NM; Marshall N; Locklin J
    Langmuir; 2011 Oct; 27(19):12033-41. PubMed ID: 21875096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coarse-grained simulations of the solution-phase self-assembly of poly(3-hexylthiophene) nanostructures.
    Schwarz KN; Kee TW; Huang DM
    Nanoscale; 2013 Mar; 5(5):2017-27. PubMed ID: 23370200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly and organization of poly(3-hexylthiophene) brushes and their potential use as novel anode buffer layers for organic photovoltaics.
    Alonzo J; Kochemba WM; Pickel DL; Ramanathan M; Sun Z; Li D; Chen J; Sumpter BG; Heller WT; Kilbey SM
    Nanoscale; 2013 Oct; 5(19):9357-64. PubMed ID: 23955069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay of three-dimensional morphologies and photocarrier dynamics of polymer/TiO2 bulk heterojunction solar cells.
    Li SS; Chang CP; Lin CC; Lin YY; Chang CH; Yang JR; Chu MW; Chen CW
    J Am Chem Soc; 2011 Aug; 133(30):11614-20. PubMed ID: 21682313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled Growth of Well-Defined Conjugated Polymers from the Surfaces of Multiwalled Carbon Nanotubes: Photoresponse Enhancement via Charge Separation.
    Hou W; Zhao NJ; Meng D; Tang J; Zeng Y; Wu Y; Weng Y; Cheng C; Xu X; Li Y; Zhang JP; Huang Y; Bielawski CW; Geng J
    ACS Nano; 2016 May; 10(5):5189-98. PubMed ID: 27087146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grafting Poly(3-hexylthiophene) from Silicon Nanocrystal Surfaces: Synthesis and Properties of a Functional Hybrid Material with Direct Interfacial Contact.
    Islam MA; Purkait TK; Mobarok MH; Hoehlein IM; Sinelnikov R; Iqbal M; Azulay D; Balberg I; Millo O; Rieger B; Veinot JG
    Angew Chem Int Ed Engl; 2016 Jun; 55(26):7393-7. PubMed ID: 27144670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of structural order and excess energy on ultrafast free charge generation in hybrid polythiophene/Si photovoltaics probed in real time by near-infrared broadband transient absorption.
    Herrmann D; Niesar S; Scharsich C; Köhler A; Stutzmann M; Riedle E
    J Am Chem Soc; 2011 Nov; 133(45):18220-33. PubMed ID: 21942512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.