BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 19860833)

  • 1. Caenorhabditis elegans metallothionein isoform specificity--metal binding abilities and the role of histidine in CeMT1 and CeMT2.
    Bofill R; Orihuela R; Romagosa M; Domènech J; Atrian S; Capdevila M
    FEBS J; 2009 Dec; 276(23):7040-56. PubMed ID: 19860833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative metal binding and genomic analysis of the avian (chicken) and mammalian metallothionein.
    Villarreal L; Tío L; Capdevila M; Atrian S
    FEBS J; 2006 Feb; 273(3):523-35. PubMed ID: 16420476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman study of in vivo synthesized Zn(II)-metallothionein complexes: structural insight into metal clusters and protein folding.
    Torreggiani A; Domènech J; Atrian S; Capdevila M; Tinti A
    Biopolymers; 2008 Dec; 89(12):1114-24. PubMed ID: 18690663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant metallothionein domains: functional insight into physiological metal binding and protein folding.
    Domènech J; Mir G; Huguet G; Capdevila M; Molinas M; Atrian S
    Biochimie; 2006 Jun; 88(6):583-93. PubMed ID: 16377055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of native metal-S(2-)-metallothionein complexes confirmed by the analysis of Cup1 divalent-metal-ion binding properties.
    Orihuela R; Monteiro F; Pagani A; Capdevila M; Atrian S
    Chemistry; 2010 Nov; 16(41):12363-72. PubMed ID: 20839184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural study of the zinc and cadmium complexes of a type 2 plant (Quercus suber) metallothionein: insights by vibrational spectroscopy.
    Domènech J; Tinti A; Capdevila M; Atrian S; Torreggiani A
    Biopolymers; 2007 Jun; 86(3):240-8. PubMed ID: 17377964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase.
    Paksi Z; Jancsó A; Pacello F; Nagy N; Battistoni A; Gajda T
    J Inorg Biochem; 2008 Sep; 102(9):1700-10. PubMed ID: 18565588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The beta(E)-domain of wheat E(c)-1 metallothionein: a metal-binding domain with a distinctive structure.
    Peroza EA; Schmucki R; Güntert P; Freisinger E; Zerbe O
    J Mol Biol; 2009 Mar; 387(1):207-18. PubMed ID: 19361445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal exchange in metallothioneins: a novel structurally significant Cd(5) species in the alpha domain of human metallothionein 1a.
    Rigby Duncan KE; Kirby CW; Stillman MJ
    FEBS J; 2008 May; 275(9):2227-39. PubMed ID: 18429853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral copper(I)-thiolate clusters in metallothionein and glutathione.
    Presta A; Stillman MJ
    Chirality; 1994; 6(7):521-30. PubMed ID: 7986666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The two distinctive metal ion binding domains of the wheat metallothionein Ec-1.
    Peroza EA; Kaabi AA; Meyer-Klaucke W; Wellenreuther G; Freisinger E
    J Inorg Biochem; 2009 Mar; 103(3):342-53. PubMed ID: 19111340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox labile site in a Zn4 cluster of Cu4,Zn4-metallothionein-3.
    Roschitzki B; Vasák M
    Biochemistry; 2003 Aug; 42(32):9822-8. PubMed ID: 12911326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Saccharomyces cerevisiae Crs5 Metallothionein metal-binding abilities and its role in the response to zinc overload.
    Pagani A; Villarreal L; Capdevila M; Atrian S
    Mol Microbiol; 2007 Jan; 63(1):256-69. PubMed ID: 17163970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospray ionization mass spectrometry of zinc, cadmium, and copper metallothioneins: evidence for metal-binding cooperativity.
    Gehrig PM; You C; Dallinger R; Gruber C; Brouwer M; Kägi JH; Hunziker PE
    Protein Sci; 2000 Feb; 9(2):395-402. PubMed ID: 10716192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.
    Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG
    Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-thiolate clusters in the C-terminal domain of human neuronal growth inhibitory factor (GIF).
    Hasler DW; Faller P; Vasák M
    Biochemistry; 1998 Oct; 37(42):14966-73. PubMed ID: 9778374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-binding characteristics of the amino-terminal domain of ZntA: binding of lead is different compared to cadmium and zinc.
    Liu J; Stemmler AJ; Fatima J; Mitra B
    Biochemistry; 2005 Apr; 44(13):5159-67. PubMed ID: 15794653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of chloride ligands on the structure of Zn- and Cd-metallothionein species.
    Villarreal L; Tío L; Atrian S; Capdevila M
    Arch Biochem Biophys; 2005 Mar; 435(2):331-5. PubMed ID: 15708376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The metal-binding properties of the blue crab copper specific CuMT-2: a crustacean metallothionein with two cysteine triplets.
    Serra-Batiste M; Cols N; Alcaraz LA; Donaire A; González-Duarte P; Vasák M
    J Biol Inorg Chem; 2010 Jun; 15(5):759-76. PubMed ID: 20361221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins.
    Rauser WE
    Cell Biochem Biophys; 1999; 31(1):19-48. PubMed ID: 10505666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.