These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 19860921)

  • 81. Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses.
    Prangishvili D; Garrett RA
    Biochem Soc Trans; 2004 Apr; 32(Pt 2):204-8. PubMed ID: 15046572
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The Kaumoebavirus LCC10 Genome Reveals a Unique Gene Strand Bias among "Extended
    Geballa-Koukoulas K; Andreani J; La Scola B; Blanc G
    Viruses; 2021 Jan; 13(2):. PubMed ID: 33498382
    [No Abstract]   [Full Text] [Related]  

  • 83. Evidence for the evolution of ascoviruses from iridoviruses.
    Stasiak K; Renault S; Demattei MV; Bigot Y; Federici BA
    J Gen Virol; 2003 Nov; 84(Pt 11):2999-3009. PubMed ID: 14573805
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A structural DNA binding protein of African swine fever virus with similarity to bacterial histone-like proteins.
    Borca MV; Irusta PM; Kutish GF; Carillo C; Afonso CL; Burrage AT; Neilan JG; Rock DL
    Arch Virol; 1996; 141(2):301-13. PubMed ID: 8634022
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Modeling of the Toll-like receptor 3 and a putative Toll-like receptor 3 antagonist encoded by the African swine fever virus.
    Henriques ES; Brito RM; Soares H; Ventura S; de Oliveira VL; Parkhouse RM
    Protein Sci; 2011 Feb; 20(2):247-55. PubMed ID: 21280117
    [TBL] [Abstract][Full Text] [Related]  

  • 86. DsRNA sequencing revealed a previously missed terminal sequence of a +ssRNA virus that infects dinoflagellate Heterocapsa circularisquama.
    Takahashi M; Masuda Y; Chiba Y; Urayama SI; Nagasaki K
    Virus Genes; 2024 Feb; 60(1):97-99. PubMed ID: 38198069
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Two distinct SSB protein families in nucleo-cytoplasmic large DNA viruses.
    Kazlauskas D; Venclovas C
    Bioinformatics; 2012 Dec; 28(24):3186-90. PubMed ID: 23097418
    [TBL] [Abstract][Full Text] [Related]  

  • 88. RNA Sequencing of Medusavirus Suggests Remodeling of the Host Nuclear Environment at an Early Infection Stage.
    Zhang R; Endo H; Takemura M; Ogata H
    Microbiol Spectr; 2021 Oct; 9(2):e0006421. PubMed ID: 34585975
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Algal viruses with distinct intraspecies host specificities include identical intein elements.
    Nagasaki K; Shirai Y; Tomaru Y; Nishida K; Pietrokovski S
    Appl Environ Microbiol; 2005 Jul; 71(7):3599-607. PubMed ID: 16000767
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A hypothesis for DNA viruses as the origin of eukaryotic replication proteins.
    Villarreal LP; DeFilippis VR
    J Virol; 2000 Aug; 74(15):7079-84. PubMed ID: 10888648
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Evolution of Eukaryotic DNA Polymerases via Interaction Between Cells and Large DNA Viruses.
    Takemura M; Yokobori S; Ogata H
    J Mol Evol; 2015 Aug; 81(1-2):24-33. PubMed ID: 26177821
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Whole-genome-based phylogeny of African swine fever virus.
    Aslanyan L; Avagyan H; Karalyan Z
    Vet World; 2020 Oct; 13(10):2118-2125. PubMed ID: 33281345
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Pangenomic Analysis of Nucleo-Cytoplasmic Large DNA Viruses. I: The Phylogenetic Distribution of Conserved Oxygen-Dependent Enzymes Reveals a Capture-Gene Process.
    Campillo-Balderas JA; Lazcano A; Cottom-Salas W; Jácome R; Becerra A
    J Mol Evol; 2023 Oct; 91(5):647-668. PubMed ID: 37526693
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes.
    Hingamp P; Grimsley N; Acinas SG; Clerissi C; Subirana L; Poulain J; Ferrera I; Sarmento H; Villar E; Lima-Mendez G; Faust K; Sunagawa S; Claverie JM; Moreau H; Desdevises Y; Bork P; Raes J; de Vargas C; Karsenti E; Kandels-Lewis S; Jaillon O; Not F; Pesant S; Wincker P; Ogata H
    ISME J; 2013 Sep; 7(9):1678-95. PubMed ID: 23575371
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Evolution of DNA ligases of nucleo-cytoplasmic large DNA viruses of eukaryotes: a case of hidden complexity.
    Yutin N; Koonin EV
    Biol Direct; 2009 Dec; 4():51. PubMed ID: 20021668
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Classification and characterization of multigene family proteins of African swine fever viruses.
    Zhu Z; Chen H; Liu L; Cao Y; Jiang T; Zou Y; Peng Y
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33333556
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A comparative review of viral entry and attachment during large and giant dsDNA virus infections.
    Sobhy H
    Arch Virol; 2017 Dec; 162(12):3567-3585. PubMed ID: 28866775
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Detection of novel sequences related to african Swine Fever virus in human serum and sewage.
    Loh J; Zhao G; Presti RM; Holtz LR; Finkbeiner SR; Droit L; Villasana Z; Todd C; Pipas JM; Calgua B; Girones R; Wang D; Virgin HW
    J Virol; 2009 Dec; 83(24):13019-25. PubMed ID: 19812170
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Genomic analysis of the smallest giant virus--Feldmannia sp. virus 158.
    Schroeder DC; Park Y; Yoon HM; Lee YS; Kang SW; Meints RH; Ivey RG; Choi TJ
    Virology; 2009 Feb; 384(1):223-32. PubMed ID: 19054537
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Diversity and abundance of single-stranded DNA viruses in human feces.
    Kim MS; Park EJ; Roh SW; Bae JW
    Appl Environ Microbiol; 2011 Nov; 77(22):8062-70. PubMed ID: 21948823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.