BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 19861410)

  • 1. Lack of oxygen deactivates mitochondrial complex I: implications for ischemic injury?
    Galkin A; Abramov AY; Frakich N; Duchen MR; Moncada S
    J Biol Chem; 2009 Dec; 284(52):36055-36061. PubMed ID: 19861410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S-nitrosation of mitochondrial complex I depends on its structural conformation.
    Galkin A; Moncada S
    J Biol Chem; 2007 Dec; 282(52):37448-53. PubMed ID: 17956863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols.
    Brown GC; Borutaite V
    Biochim Biophys Acta; 2004 Jul; 1658(1-2):44-9. PubMed ID: 15282173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanism and physiological role of active-deactive transition of mitochondrial complex I.
    Babot M; Galkin A
    Biochem Soc Trans; 2013 Oct; 41(5):1325-30. PubMed ID: 24059527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ischemic A/D transition of mitochondrial complex I and its role in ROS generation.
    Dröse S; Stepanova A; Galkin A
    Biochim Biophys Acta; 2016 Jul; 1857(7):946-57. PubMed ID: 26777588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deactivation of mitochondrial complex I after hypoxia-ischemia in the immature brain.
    Stepanova A; Konrad C; Guerrero-Castillo S; Manfredi G; Vannucci S; Arnold S; Galkin A
    J Cereb Blood Flow Metab; 2019 Sep; 39(9):1790-1802. PubMed ID: 29629602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversal of nitric oxide-, peroxynitrite- and S-nitrosothiol-induced inhibition of mitochondrial respiration or complex I activity by light and thiols.
    Borutaite V; Budriunaite A; Brown GC
    Biochim Biophys Acta; 2000 Aug; 1459(2-3):405-12. PubMed ID: 11004457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury.
    Prime TA; Blaikie FH; Evans C; Nadtochiy SM; James AM; Dahm CC; Vitturi DA; Patel RP; Hiley CR; Abakumova I; Requejo R; Chouchani ET; Hurd TR; Garvey JF; Taylor CT; Brookes PS; Smith RA; Murphy MP
    Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10764-9. PubMed ID: 19528654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of the active/de-active transition of mitochondrial complex I.
    Babot M; Birch A; Labarbuta P; Galkin A
    Biochim Biophys Acta; 2014 Jul; 1837(7):1083-92. PubMed ID: 24569053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide.
    Pryor WA; Squadrito GL
    Am J Physiol; 1995 May; 268(5 Pt 1):L699-722. PubMed ID: 7762673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation.
    Riobó NA; Clementi E; Melani M; Boveris A; Cadenas E; Moncada S; Poderoso JJ
    Biochem J; 2001 Oct; 359(Pt 1):139-45. PubMed ID: 11563977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: implications for Parkinson's disease.
    Chinta SJ; Andersen JK
    Free Radic Biol Med; 2006 Nov; 41(9):1442-8. PubMed ID: 17023271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia induces complex I inhibition and ultrastructural damage by increasing mitochondrial nitric oxide in developing CNS.
    Giusti S; Converso DP; Poderoso JJ; Fiszer de Plazas S
    Eur J Neurosci; 2008 Jan; 27(1):123-31. PubMed ID: 18184317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational change of mitochondrial complex I increases ROS sensitivity during ischemia.
    Gorenkova N; Robinson E; Grieve DJ; Galkin A
    Antioxid Redox Signal; 2013 Nov; 19(13):1459-68. PubMed ID: 23419200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia potentiates nitric oxide-mediated apoptosis in endothelial cells via peroxynitrite-induced activation of mitochondria-dependent and -independent pathways.
    Walford GA; Moussignac RL; Scribner AW; Loscalzo J; Leopold JA
    J Biol Chem; 2004 Feb; 279(6):4425-32. PubMed ID: 14597620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrosylation and nitration of mitochondrial complex I in Parkinson's disease.
    Chinta SJ; Andersen JK
    Free Radic Res; 2011 Jan; 45(1):53-8. PubMed ID: 20815786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heme oxygenase-1 induction improves ischemic renal failure: role of nitric oxide and peroxynitrite.
    Salom MG; Cerón SN; Rodriguez F; Lopez B; Hernández I; Martínez JG; Losa AM; Fenoy FJ
    Am J Physiol Heart Circ Physiol; 2007 Dec; 293(6):H3542-9. PubMed ID: 17890422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclosporine A-induced nitration of tyrosine 34 MnSOD in endothelial cells: role of mitochondrial superoxide.
    Redondo-Horcajo M; Romero N; Martínez-Acedo P; Martínez-Ruiz A; Quijano C; Lourenço CF; Movilla N; Enríquez JA; Rodríguez-Pascual F; Rial E; Radi R; Vázquez J; Lamas S
    Cardiovasc Res; 2010 Jul; 87(2):356-65. PubMed ID: 20106845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of nitric oxide release from S-nitrosothiols.
    Singh RJ; Hogg N; Joseph J; Kalyanaraman B
    J Biol Chem; 1996 Aug; 271(31):18596-603. PubMed ID: 8702510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel role for cytochrome c: Efficient catalysis of S-nitrosothiol formation.
    Basu S; Keszler A; Azarova NA; Nwanze N; Perlegas A; Shiva S; Broniowska KA; Hogg N; Kim-Shapiro DB
    Free Radic Biol Med; 2010 Jan; 48(2):255-63. PubMed ID: 19879353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.