These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19861540)

  • 1. Tumor growth instability and its implications for chemotherapy.
    Castorina P; Carcò D; Guiot C; Deisboeck TS
    Cancer Res; 2009 Nov; 69(21):8507-15. PubMed ID: 19861540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemotherapeutic Dose Scheduling Based on Tumor Growth Rates Provides a Case for Low-Dose Metronomic High-Entropy Therapies.
    West J; Newton PK
    Cancer Res; 2017 Dec; 77(23):6717-6728. PubMed ID: 28986381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Norton-Simon hypothesis: designing more effective and less toxic chemotherapeutic regimens.
    Simon R; Norton L
    Nat Clin Pract Oncol; 2006 Aug; 3(8):406-7. PubMed ID: 16894366
    [No Abstract]   [Full Text] [Related]  

  • 4. Optimal robust control of drug delivery in cancer chemotherapy: a comparison between three control approaches.
    Moradi H; Vossoughi G; Salarieh H
    Comput Methods Programs Biomed; 2013 Oct; 112(1):69-83. PubMed ID: 23891423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical analysis and simulations involving chemotherapy and surgery on large human tumours under a suitable cell-kill functional response.
    Rodrigues DS; de Arruda Mancera PF
    Math Biosci Eng; 2013 Feb; 10(1):221-34. PubMed ID: 23311370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modeling of 3D tumor growth and angiogenesis for chemotherapy evaluation.
    Tang L; van de Ven AL; Guo D; Andasari V; Cristini V; Li KC; Zhou X
    PLoS One; 2014; 9(1):e83962. PubMed ID: 24404145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the chemotherapy-induced selection of drug-resistant traits during tumor growth.
    Cho H; Levy D
    J Theor Biol; 2018 Jan; 436():120-134. PubMed ID: 29030212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemotherapy for tumors: an analysis of the dynamics and a study of quadratic and linear optimal controls.
    de Pillis LG; Gu W; Fister KR; Head T; Maples K; Murugan A; Neal T; Yoshida K
    Math Biosci; 2007 Sep; 209(1):292-315. PubMed ID: 17306310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microenvironment based model of antimitotic therapy of Gompertzian tumor growth.
    Kozusko F; Bourdeau M; Bajzer Z; Dingli D
    Bull Math Biol; 2007 Jul; 69(5):1691-708. PubMed ID: 17577604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancer log-kill revisited.
    Norton L
    Am Soc Clin Oncol Educ Book; 2014; ():3-7. PubMed ID: 24857052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing chemotherapy dose and schedule by Norton-Simon mathematical modeling.
    Traina TA; Dugan U; Higgins B; Kolinsky K; Theodoulou M; Hudis CA; Norton L
    Breast Dis; 2010; 31(1):7-18. PubMed ID: 20519801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A delay differential equation model for tumor growth.
    Villasana M; Radunskaya A
    J Math Biol; 2003 Sep; 47(3):270-94. PubMed ID: 12955460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale modeling of the dynamic growth of cancerous tumors under the influence of chemotherapy drugs.
    Farjami E; Mahjoob M
    Comput Methods Biomech Biomed Engin; 2024 Jun; 27(8):919-930. PubMed ID: 37227061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal control of tumor size used to maximize survival time when cells are resistant to chemotherapy.
    Martin RB; Fisher ME; Minchin RF; Teo KL
    Math Biosci; 1992 Jul; 110(2):201-19. PubMed ID: 1498450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal control for selected cancer chemotherapy ODE models: a view on the potential of optimal schedules and choice of objective function.
    Engelhart M; Lebiedz D; Sager S
    Math Biosci; 2011 Jan; 229(1):123-34. PubMed ID: 21129386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy.
    Ledzewicz U; Schättler H
    Math Biosci; 2007 Apr; 206(2):320-42. PubMed ID: 16197967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-intensity combination chemotherapy maximizes host survival time for tumors containing drug-resistant cells.
    Martin RB; Fisher ME; Minchin RF; Teo KL
    Math Biosci; 1992 Jul; 110(2):221-52. PubMed ID: 1498451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational study of combination HIFU-chemotherapy as a potential means of overcoming cancer drug resistance.
    Ghasemi M; Sivaloganathan S
    Math Biosci; 2020 Nov; 329():108456. PubMed ID: 32841615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy.
    Shamsi M; Sedaghatkish A; Dejam M; Saghafian M; Mohammadi M; Sanati-Nezhad A
    Drug Deliv; 2018 Nov; 25(1):846-861. PubMed ID: 29589479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling oxaliplatin drug delivery to circadian rhythms in drug metabolism and host tolerance.
    Clairambault J
    Adv Drug Deliv Rev; 2007 Aug; 59(9-10):1054-68. PubMed ID: 17707544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.