These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19861540)

  • 21. Reinforcement learning-based control of drug dosing for cancer chemotherapy treatment.
    Padmanabhan R; Meskin N; Haddad WM
    Math Biosci; 2017 Nov; 293():11-20. PubMed ID: 28822813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conflicting objectives in chemotherapy with drug resistance.
    Costa MI; Boldrini JL
    Bull Math Biol; 1997 Jul; 59(4):707-24. PubMed ID: 9214850
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells.
    Barbarossa MV; Kuttler C; Zinsl J
    Math Biosci Eng; 2012 Apr; 9(2):241-57. PubMed ID: 22901063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The interval between courses of high-dose chemotherapy with stem cell rescue: therapeutic hypotheses.
    Frei E; Richardson P; Avigan D; Bunnell C; Wheeler C; Elias A
    Bone Marrow Transplant; 1999 Nov; 24(9):939-45. PubMed ID: 10556951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An example of the effects of drug resistance on the optimal schedule for a single drug in cancer chemotherapy.
    Murray JM
    IMA J Math Appl Med Biol; 1995; 12(1):55-69. PubMed ID: 7594878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A bilinear control model for tumor growth and chemotherapy.
    Vaidya VG; Alexandro FJ; Vaidya PG
    Int J Biomed Comput; 1985 Sep; 17(2):145-54. PubMed ID: 4055120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling drug resistance in a conjoint normal-tumor setting.
    Feizabadi MS; Witten TM
    Theor Biol Med Model; 2015 Jan; 12():3. PubMed ID: 25588472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Therapy burden, drug resistance, and optimal treatment regimen for cancer chemotherapy.
    Boldrini JL; Costa MI
    IMA J Math Appl Med Biol; 2000 Mar; 17(1):33-51. PubMed ID: 10757031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimal strategy in chemotherapy for Malthusian model of cancer growth.
    Maroński R
    Acta Bioeng Biomech; 2017; 19(1):63-68. PubMed ID: 28552935
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Therapeutic failure of antineoplastic agents. Extracellular and cellular causes].
    Hofsli E
    Tidsskr Nor Laegeforen; 1991 Jan; 111(1):37-40. PubMed ID: 2000585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Derivation of an optimal trajectory and nonlinear adaptive controller design for drug delivery in cancerous tumor chemotherapy.
    Khalili P; Vatankhah R
    Comput Biol Med; 2019 Jun; 109():195-206. PubMed ID: 31075570
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The dynamics of cell proliferation.
    Moxnes JF; Haux J; Hausken K
    Med Hypotheses; 2004; 62(4):556-63. PubMed ID: 15050107
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy.
    Ledzewicz U; Maurer H; Schättler H
    Math Biosci Eng; 2011 Apr; 8(2):307-23. PubMed ID: 21631132
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemotherapeutic treatments: a study of the interplay among drug resistance, toxicity and recuperation from side effects.
    Costa MI; Boldrini JL
    Bull Math Biol; 1997 Mar; 59(2):205-32. PubMed ID: 9116600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the MTD paradigm and optimal control for multi-drug cancer chemotherapy.
    Ledzewicz U; Schättler H; Gahrooi MR; Dehkordi SM
    Math Biosci Eng; 2013 Jun; 10(3):803-19. PubMed ID: 24063059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemotherapy may be delivered based on an integrated view of tumour dynamics.
    Ribba B; You B; Tod M; Girard P; Tranchand B; Trillet-Lenoir V; Freyer G
    IET Syst Biol; 2009 May; 3(3):180-90. PubMed ID: 19449978
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonlinear model predictive control for dosing daily anticancer agents using a novel saturating-rate cell-cycle model.
    Florian JA; Eiseman JL; Parker RS
    Comput Biol Med; 2008 Mar; 38(3):339-47. PubMed ID: 18222419
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimal Therapy Scheduling Based on a Pair of Collaterally Sensitive Drugs.
    Yoon N; Vander Velde R; Marusyk A; Scott JG
    Bull Math Biol; 2018 Jul; 80(7):1776-1809. PubMed ID: 29736596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immunogenic chemotherapy: Dose and schedule dependence and combination with immunotherapy.
    Wu J; Waxman DJ
    Cancer Lett; 2018 Apr; 419():210-221. PubMed ID: 29414305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mathematical modeling of cancer progression and response to chemotherapy.
    Sanga S; Sinek JP; Frieboes HB; Ferrari M; Fruehauf JP; Cristini V
    Expert Rev Anticancer Ther; 2006 Oct; 6(10):1361-76. PubMed ID: 17069522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.