These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 19862020)

  • 1. Antiresonant reflecting optical waveguides formed from solgel films.
    Clark DF; Smith B
    Opt Lett; 1995 Jun; 20(12):1377-9. PubMed ID: 19862020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silicon antiresonant reflecting optical waveguides.
    Soref RA; Ritter KJ
    Opt Lett; 1990 Jul; 15(14):792-4. PubMed ID: 19768080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of planar antiresonant reflecting optical waveguide structures on silicon by an Abbe refractometer.
    Smith B; Clark DF; Hamilton C
    Opt Lett; 1995 Oct; 20(20):2084-6. PubMed ID: 19862258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorophore-doped xerogel antiresonant reflecting optical waveguides.
    Llobera A; Cadarso VJ; Carregal-Romero E; Brugger J; Domínguez C; Fernández-Sánchez C
    Opt Express; 2011 Mar; 19(6):5026-39. PubMed ID: 21445138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bend losses in flexible polyurethane antiresonant terahertz waveguides.
    Stefani A; Henry Skelton J; Tuniz A
    Opt Express; 2021 Aug; 29(18):28692-28703. PubMed ID: 34614994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of Y-splitting antiresonant reflecting optical waveguides-based rib waveguides.
    Stott MA; Black J; Hamilton E; Schmidt H; Hawkins AR
    Opt Eng; 2016 Oct; 55(10):. PubMed ID: 28190900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicon-based dual ARROW power splitters with remote coupling.
    Hsu HF; Hsu MS; Lu MF; Huang YT
    Appl Opt; 2015 Mar; 54(8):2098-105. PubMed ID: 25968389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of ridge waveguides: a new solgel route.
    Fardad A; Andrews M; Milova G; Malek-Tabrizi A; Najafi I
    Appl Opt; 1998 Apr; 37(12):2429-34. PubMed ID: 18273177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertical antiresonant reflecting optical waveguide coupler for three-dimensional optical interconnects: optimum design for large tolerance, high coupling efficiency, and short coupling length.
    Sekimoto T; Ikuta S; Pan W; Chu ST; Kokubun Y
    Appl Opt; 2000 Jan; 39(3):426-30. PubMed ID: 18337911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated ARROW waveguides with hollow cores.
    Yin D; Schmidt H; Barber J; Hawkins A
    Opt Express; 2004 Jun; 12(12):2710-5. PubMed ID: 19475112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media.
    Chen C; Berini P; Feng D; Tanev S; Tzolov V
    Opt Express; 2000 Oct; 7(8):260-72. PubMed ID: 19407874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, fabrication, and characterization of Si-based ARROW photonic crystal bend waveguides and power splitters.
    Chen JH; Huang YT; Yang YL; Lu MF; Shieh JM
    Appl Opt; 2012 Aug; 51(24):5876-84. PubMed ID: 22907016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical characterization of arch-shaped ARROW waveguides with liquid cores.
    Yin D; Schmidt H; Barber JP; Lunt EJ; Hawkins AR
    Opt Express; 2005 Dec; 13(26):10564-70. PubMed ID: 19503271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides.
    Tsay C; Mujagić E; Madsen CK; Gmachl CF; Arnold CB
    Opt Express; 2010 Jul; 18(15):15523-30. PubMed ID: 20720932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compact spot-size converters with fiber-matched antiresonant reflecting optical waveguides.
    Galarza M; De Mesel K; Baets R; Martínez A; Aramburu C; López-Amo M
    Appl Opt; 2003 Aug; 42(24):4841-6. PubMed ID: 12952328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma-enhanced chemical vapor deposition of low-loss SiON optical waveguides at 15-microm wavelength.
    Bruno F; Guidice MD; Recca R; Testa F
    Appl Opt; 1991 Nov; 30(31):4560-4. PubMed ID: 20717249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate first-order leaky-wave analysis of antiresonant reflecting optical waveguides.
    Sheng MH; Chang HW
    Appl Opt; 2005 Feb; 44(5):751-64. PubMed ID: 15751856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of fully integrated antiresonant reflecting optical waveguides using the femtosecond laser direct-write technique.
    Gross S; Alberich M; Arriola A; Withford MJ; Fuerbach A
    Opt Lett; 2013 Jun; 38(11):1872-4. PubMed ID: 23722773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optofluidic notch filter integration by lift-off of thin films.
    Phillips BS; Measor P; Zhao Y; Schmidt H; Hawkins AR
    Opt Express; 2010 Mar; 18(5):4790-5. PubMed ID: 20389492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of gold nanoparticles on the 1.53 µm optical gain in Er3+/Yb3+: PbO-GeO2 RIB waveguides.
    da Silva DM; Kassab LR; Siarkowski AL; de Araújo CB
    Opt Express; 2014 Jun; 22(13):16424-30. PubMed ID: 24977891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.