These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19862035)

  • 1. Determination of the xenon 6s[3/2](2)-6s'[1/2](0) clock frequency by interferometric wavelength measurements.
    Sterr U; Bard A; Sansonetti CJ; Rolston SL; Gillaspy JD
    Opt Lett; 1995 Jun; 20(12):1421-3. PubMed ID: 19862035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-Transfer Kinetics Driven by Midinfrared Amplified Spontaneous Emission after Two-Photon Excitation from Xe (s
    He S; Guan Y; Liu D; Xia X; Gai B; Hu S; Guo J; Sang F; Jin Y
    J Phys Chem A; 2017 May; 121(18):3430-3436. PubMed ID: 28441478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lifetime of the metastable 6s' [(1/2)](0) clock state in xenon.
    Walhout M; Sterr U; Witte A; Rolston SL
    Opt Lett; 1995 May; 20(10):1192-4. PubMed ID: 19859469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy-Transfer Kinetics for Xe (6p[1/2]
    He S; Liu D; Li X; Chu J; Guo J; Liu J; Hu S; Sang F; Jin Y
    J Phys Chem A; 2018 Jun; 122(24):5361-5369. PubMed ID: 29807430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass-resolved two-photon and photoelectron spectra of ArXe in the region of Xe* 7p, 6p', 6d.
    Rakcheeva LP; Serdobintsev PY; Belyaeva AA; Shevkunov IA; Melnikov AS; Nakozina AA; Pastor AA; Khodorkovskii MA
    J Chem Phys; 2013 Nov; 139(17):174304. PubMed ID: 24206295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interruption of electronically excited Xe dimer formation by the photoassociation of Xe(6s[3/2]2)-Xe(5p(6) (1)S0) thermal collision pairs.
    Galvin TC; Wagner CJ; Eden JG
    J Chem Phys; 2016 Jun; 144(24):244308. PubMed ID: 27369516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saturated absorption spectroscopy of Xe using a GaAs semiconductor laser.
    Suzuki M; Katoh K; Nishimiya N
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Sep; 58(11):2519-31. PubMed ID: 12353702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency determination of visible laser light by interferometric comparison with upconverted CO(2) laser radiation.
    Woods PT; Shotton KC; Rowley WR
    Appl Opt; 1978 Apr; 17(7):1048-54. PubMed ID: 20197930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge.
    MacDonald NA; Cappelli MA; Hargus WA
    Rev Sci Instrum; 2012 Nov; 83(11):113506. PubMed ID: 23206061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct frequency measurements of transitions at 520 THz (576 nm) in iodine and 260 THz (1.15 microm) in neon.
    Pollock CR; Jennings DA; Petersen FR; Wells JS; Drullinger RE; Beaty EC; Evenson KM
    Opt Lett; 1983 Mar; 8(3):133-5. PubMed ID: 19714161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution 133Cs 6S-6D, 6S-8S two-photon spectroscopy using an intracavity scheme.
    Chen YH; Liu TW; Wu CM; Lee CC; Lee CK; Cheng WY
    Opt Lett; 2011 Jan; 36(1):76-8. PubMed ID: 21209692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Description, performance, and wavelengths of iodine stabilized lasers.
    Schweitzer WG; Kessler EG; Deslattes RD; Layer HP; Whetstone JR
    Appl Opt; 1973 Dec; 12(12):2927-38. PubMed ID: 20125899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H(D)-atom yields in the quenching of Xe(6s[3/2]1) by methane, ethane, ethene, ethyne, and their deuterated isotopologues.
    Umemoto H
    J Chem Phys; 2006 Jul; 125(3):34306. PubMed ID: 16863349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise frequency measurements of iodine hyperfine transitions at 671 nm.
    Huang YC; Chen HC; Chen SE; Shy JT; Wang LB
    Appl Opt; 2013 Mar; 52(7):1448-52. PubMed ID: 23458797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of the cesium clock transition in laser-cooled atoms.
    Sesko DW; Wieman CE
    Opt Lett; 1989 Mar; 14(5):269-71. PubMed ID: 19749891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S(0)↔3P(0) clock transition.
    Yi L; Mejri S; McFerran JJ; Le Coq Y; Bize S
    Phys Rev Lett; 2011 Feb; 106(7):073005. PubMed ID: 21405514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct frequency measurement of the I(2)-stabilized He-Ne 473-THz (633-nm) laser.
    Jennings DA; Pollock CR; Petersen FR; Drullinger RE; Evenson KM; Wells JS; Hall JL; Layer HP
    Opt Lett; 1983 Mar; 8(3):136-8. PubMed ID: 19714162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability, Reproducibility, and Absolute Wavelength of a 633-nm He-Ne Laser Stabilized to an Iodine Hyperfine Component.
    Hanes GR; Baird KM; Deremigis J
    Appl Opt; 1973 Jul; 12(7):1600-5. PubMed ID: 20125571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency stabilization of a 1.3 microm laser diode using double resonance optical pumping in the 5P 3/2-6S 1/2 transition of Rb atoms.
    Moon HS
    Appl Opt; 2008 Mar; 47(8):1097-102. PubMed ID: 18327281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absolute frequency and isotope shift measurements of mercury
    Witkowski M; Kowzan G; Munoz-Rodriguez R; Ciuryło R; Żuchowski PS; Masłowski P; Zawada M
    Opt Express; 2019 Apr; 27(8):11069-11083. PubMed ID: 31052957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.