These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Analysis of the optical extraction efficiency in gas-flow lasers with different types of resonator. Barmashenko BD; Rosenwaks S Appl Opt; 1996 Dec; 35(36):7091-101. PubMed ID: 21151313 [TBL] [Abstract][Full Text] [Related]
3. Analysis of lasing in gas-flow lasers with stable resonators. Barmashenko B; Furman D; Rosenwaks S Appl Opt; 1998 Aug; 37(24):5697-705. PubMed ID: 18286057 [TBL] [Abstract][Full Text] [Related]
4. Maximizing output power of a low-gain laser system. Carroll DL; Sentman LH Appl Opt; 1993 Jul; 32(21):3930-41. PubMed ID: 20830029 [TBL] [Abstract][Full Text] [Related]
5. Analysis of lasing in chemical oxygen-iodine lasers with unstable resonators using a geometric-optics model. Barmashenko BD Appl Opt; 2009 May; 48(13):2542-50. PubMed ID: 19412214 [TBL] [Abstract][Full Text] [Related]
6. Chemical laser power spectral performance: a coupled fluid dynamic, kinetic, and physical optics model. Sentman LH Appl Opt; 1978 Jul; 17(14):2244-9. PubMed ID: 20203765 [TBL] [Abstract][Full Text] [Related]
7. Measurements of the phase shift on reflection for low-order infrared Fabry-Perot interferometer dielectric stack mirrors. Mielke SL; Ryan RE; Hilgeman T; Lesyna L; Madonna RG; Van Nostrand WC Appl Opt; 1997 Nov; 36(31):8139-44. PubMed ID: 18264347 [TBL] [Abstract][Full Text] [Related]
8. Characterization of optical resonators with an incoherent light. Tsuchida H Opt Express; 2012 Dec; 20(28):29347-52. PubMed ID: 23388761 [TBL] [Abstract][Full Text] [Related]
9. A simple technique for accurate and complete characterisation of a Fabry-Perot cavity. Locke CR; Stuart D; Ivanov EN; Luiten AN Opt Express; 2009 Nov; 17(24):21935-43. PubMed ID: 19997438 [TBL] [Abstract][Full Text] [Related]
14. Comparing modeling and measurements of the output power in chemical oxygen-iodine lasers: a stringent test of I2 dissociation mechanisms. Waichman K; Barmashenko BD; Rosenwaks S J Chem Phys; 2010 Aug; 133(8):084301. PubMed ID: 20815563 [TBL] [Abstract][Full Text] [Related]
15. Power scaling laws for cw HCN conventional Fabry-Perot lasers and comparison with cw HCN waveguide lasers. Belland P; Crenn JP Appl Opt; 1979 May; 18(10):1513-7. PubMed ID: 20212887 [TBL] [Abstract][Full Text] [Related]
16. Optical extraction efficiency in lasers with high Fresnel number confocal unstable resonators. Chernin DP Appl Opt; 1979 Nov; 18(21):3562-6. PubMed ID: 20216651 [TBL] [Abstract][Full Text] [Related]
17. Graphene-based electromagnetically induced transparency with coupling Fabry-Perot resonators. Zhuang H; Kong F; Li K; Sheng S Appl Opt; 2015 Aug; 54(24):7455-61. PubMed ID: 26368785 [TBL] [Abstract][Full Text] [Related]
18. Diffractively coupled Fabry-Perot resonator with power-recycling. Britzger M; Friedrich D; Kroker S; Brückner F; Burmeister O; Kley EB; Tünnermann A; Danzmann K; Schnabel R Opt Express; 2011 Aug; 19(16):14964-75. PubMed ID: 21934858 [TBL] [Abstract][Full Text] [Related]