These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Model for resonant intensity dependence of photorefractive two-wave mixing in InP:Fe. Picoli G; Gravey P; Ozkul C Opt Lett; 1989 Dec; 14(24):1362-4. PubMed ID: 19759683 [TBL] [Abstract][Full Text] [Related]
3. Optical and photorefractive properties of InP:Ti: a new photorefractive semiconductor. Nolte DD; Olsen DH; Monberg EM; Bridenbaugh PM; Glass AM Opt Lett; 1989 Nov; 14(22):1278-80. PubMed ID: 19759658 [TBL] [Abstract][Full Text] [Related]
4. High-speed photorefraction at telecommunication wavelength 1.55 microm in Sn2P2S6:Te. Mosimann R; Marty P; Bach T; Juvalta F; Jazbinsek M; Günter P; Grabar AA Opt Lett; 2007 Nov; 32(22):3230-2. PubMed ID: 18026263 [TBL] [Abstract][Full Text] [Related]
5. High gain coherent amplification in thermally stabilized InP:Fe crystals under dc fields. Ozkul C; Picoli G; Gravey P; Wolffer N Appl Opt; 1990 Jun; 29(18):2711-7. PubMed ID: 20567319 [TBL] [Abstract][Full Text] [Related]
6. Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe. Chauvet M; Hawkins SA; Salamo GJ; Segev M; Bliss DF; Bryant G Opt Lett; 1996 Sep; 21(17):1333-5. PubMed ID: 19876343 [TBL] [Abstract][Full Text] [Related]
7. Fabrication and characterization of molecular beam epitaxy grown thin-film GaAs waveguides for mid-infrared evanescent field chemical sensing. Charlton C; Giovannini M; Faist J; Mizaikoff B Anal Chem; 2006 Jun; 78(12):4224-7. PubMed ID: 16771554 [TBL] [Abstract][Full Text] [Related]
8. Single-mode GaAs/AIGaAs W waveguides with a low propagation loss. Byun YT; Park KH; Kim SH; Choi SS; Lim TK Appl Opt; 1996 Feb; 35(6):928-33. PubMed ID: 21069091 [TBL] [Abstract][Full Text] [Related]
9. Fast dynamic waveguides and waveguide arrays in photorefractive Sn(2)P(2)S(6) induced by visible light. Juvalta F; Mosimann R; Jazbinsek M; Günter P Opt Express; 2009 Jan; 17(2):379-84. PubMed ID: 19158850 [TBL] [Abstract][Full Text] [Related]
10. Amplified phase-conjugate beam reflection by four-wave mixing with photorefractive Bi(12)SiO(20) crystals. Rajbenbach H; Huignard JP; Refrégier P Opt Lett; 1984 Dec; 9(12):558-60. PubMed ID: 19721667 [TBL] [Abstract][Full Text] [Related]
11. High photorefractive gain in two-beam coupling with moving fringes in GaAs:Cr crystals. Imbert B; Rajbenbach H; Mallick S; Herriau JP; Huignard JP Opt Lett; 1988 Apr; 13(4):327-9. PubMed ID: 19745888 [TBL] [Abstract][Full Text] [Related]
12. Beam coupling in undoped GaAs at 1.06 microm using the photorefractive effect. Klein MB Opt Lett; 1984 Aug; 9(8):350-2. PubMed ID: 19721595 [TBL] [Abstract][Full Text] [Related]
13. Ion-beam manipulation of the photorefractive properties of strontium barium niobate planar waveguides. Robertson EE; Eason RW; Kaczmarek M; Chandler PJ; Huang X Opt Lett; 1996 May; 21(9):641-3. PubMed ID: 19876110 [TBL] [Abstract][Full Text] [Related]
14. Optical masks prepared by using a liquid-crystal light valve for light-induced photorefractive waveguides. Zhang P; Zhao J; Yang D; Li B; Yang D; Feng X Appl Opt; 2003 Jul; 42(20):4208-11. PubMed ID: 12856734 [TBL] [Abstract][Full Text] [Related]
16. Two-wave mixing and energy transfer in Bi(12) SiO(20) crystals: application to image amplification and vibration analysis. Huignard JP; Marrakehi A Opt Lett; 1981 Dec; 6(12):622-4. PubMed ID: 19710792 [TBL] [Abstract][Full Text] [Related]
18. Density and size control of InP/GaInP quantum dots on GaAs substrate grown by gas source molecular beam epitaxy. Rödel R; Bauer A; Kremling S; Reitzenstein S; Höfling S; Kamp M; Worschech L; Forchel A Nanotechnology; 2012 Jan; 23(1):015605. PubMed ID: 22156168 [TBL] [Abstract][Full Text] [Related]
19. Near-infrared four-wave mixing with gain and self-starting oscillators with photorefractive GaAs. Rajbenbach H; Imbert B; Huignard JP; Mallick S Opt Lett; 1989 Jan; 14(1):78-80. PubMed ID: 19749829 [TBL] [Abstract][Full Text] [Related]