These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 19862273)

  • 1. Simultaneous reconstruction of optical absorption and scattering maps in turbid media from near-infrared frequency-domain data.
    Jiang H; Paulsen KD; Osterberg UL; Pogue BW; Patterson MS
    Opt Lett; 1995 Oct; 20(20):2128-30. PubMed ID: 19862273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data.
    Jiang H; Xu Y; Iftimia N
    Opt Express; 2000 Aug; 7(5):204-9. PubMed ID: 19407866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission and fluorescence angular domain optical projection tomography of turbid media.
    Vasefi F; Ng E; Kaminska B; Chapman GH; Jordan K; Carson JJ
    Appl Opt; 2009 Nov; 48(33):6448-57. PubMed ID: 19935964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially varying optical property reconstruction using a finite element diffusion equation approximation.
    Paulsen KD; Jiang H
    Med Phys; 1995 Jun; 22(6):691-701. PubMed ID: 7565358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data.
    Xu Y; Gu X; Khan T; Jiang H
    Appl Opt; 2002 Sep; 41(25):5427-37. PubMed ID: 12211574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions.
    Tarvainen T; Vauhkonen M; Kolehmainen V; Arridge SR; Kaipio JP
    Phys Med Biol; 2005 Oct; 50(20):4913-30. PubMed ID: 16204880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency-domain optical image reconstruction in turbid media: an experimental study of single-target detectability.
    Jiang H; Paulsen KD; Osterberg UL; Patterson MS
    Appl Opt; 1997 Jan; 36(1):52-63. PubMed ID: 18250647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous reconstruction of absorption and scattering maps with ultrasound localization: feasibility study using transmission geometry.
    Huang M; Xie T; Chen NG; Zhu Q
    Appl Opt; 2003 Jul; 42(19):4102-14. PubMed ID: 12868853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements.
    Yin L; Wang Q; Zhang Q; Jiang H
    Opt Lett; 2007 Sep; 32(17):2556-8. PubMed ID: 17767303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization.
    Paulsen KD; Jiang H
    Appl Opt; 1996 Jul; 35(19):3447-58. PubMed ID: 21102734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media.
    Walker SA; Fantini S; Gratton E
    Appl Opt; 1997 Jan; 36(1):170-4. PubMed ID: 18250659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method for Measuring Absolute Optical Properties of Turbid Samples in a Standard Cuvette.
    Blaney G; Sassaroli A; Fantini S
    Appl Sci (Basel); 2022 Nov; 12(21):. PubMed ID: 37811485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the scattering delay on time-dependent photon migration in turbid media.
    Yaroslavsky IV; Yaroslavsky AN; Tuchin VV; Schwarzmaier HJ
    Appl Opt; 1997 Sep; 36(25):6529-38. PubMed ID: 18259514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of a phase array diffuse optical tomographic imager.
    Rajan K; Vijayakumar V; Biswas SK; Vasu RM
    Rev Sci Instrum; 2008 Aug; 79(8):084301. PubMed ID: 19044366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid monte carlo diffusion model.
    Alexandrakis G; Busch DR; Faris GW; Patterson MS
    Appl Opt; 2001 Aug; 40(22):3810-21. PubMed ID: 18360415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The finite-element method for the propagation of light in scattering media: frequency domain case.
    Schweiger M; Arridge SR
    Med Phys; 1997 Jun; 24(6):895-902. PubMed ID: 9198025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element simulation of light transfer in turbid media under structured illumination.
    Hu D; Lu R; Ying Y
    Appl Opt; 2017 Jul; 56(21):6035-6042. PubMed ID: 29047929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography.
    O'Leary MA; Boas DA; Chance B; Yodh AG
    Opt Lett; 1995 Mar; 20(5):426-8. PubMed ID: 19859209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light diffusion model for determination of optical properties of rectangular parallelepiped highly scattering media.
    Taniguchi J; Murata H; Okamura Y
    Appl Opt; 2007 May; 46(14):2649-55. PubMed ID: 17446913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesh-based enhancement schemes in diffuse optical tomography.
    Gu X; Xu Y; Jiang H
    Med Phys; 2003 May; 30(5):861-9. PubMed ID: 12772994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.