These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 19862415)

  • 1. Photopolymerization of conductive polymeric metal nanoparticles.
    Cai X; Anyaogu KC; Neckers DC
    Photochem Photobiol Sci; 2009 Nov; 8(11):1568-73. PubMed ID: 19862415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isomer restriction on a nanoparticle surface and enhanced blue emission.
    Cai X; Adhikari RM; Anyaogu KC; Palayangoda SS; Estrada LA; De PK; Neckers DC
    J Am Chem Soc; 2009 Feb; 131(5):1648-9. PubMed ID: 19191689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemistry of conductive polymers 39. Contacts between conducting polymers and noble metal nanoparticles studied by current-sensing atomic force microscopy.
    Cho SH; Park SM
    J Phys Chem B; 2006 Dec; 110(51):25656-64. PubMed ID: 17181203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable self-assembly from fibrinogen-gold (fibrinogen-Au) and thrombin-silver (thrombin-Ag) nanoparticle interaction.
    Roy S; Dasgupta AK
    FEBS Lett; 2007 Nov; 581(28):5533-42. PubMed ID: 17983601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure.
    Smirnova TN; Kokhtych LM; Kutsenko AS; Sakhno OV; Stumpe J
    Nanotechnology; 2009 Oct; 20(40):405301. PubMed ID: 19752504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced two-photon emission in coupled metal nanoparticles induced by conjugated polymers.
    Guan Z; Polavarapu L; Xu QH
    Langmuir; 2010 Dec; 26(23):18020-3. PubMed ID: 21028762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotube composites consisting of metal nanoparticles and polythiophene from electropolymerization of terthiophene-functionalized metal (Au, Pd) nanoparticles.
    Umeda R; Awaji H; Nakahodo T; Fujihara H
    J Am Chem Soc; 2008 Mar; 130(11):3240-1. PubMed ID: 18288846
    [No Abstract]   [Full Text] [Related]  

  • 8. Formation of silver nanoparticles in deoxyribonucleic acid-poly(o-methoxyaniline) hybrid: a novel nano-biocomposite.
    Dawn A; Nandi AK
    J Phys Chem B; 2006 Sep; 110(37):18291-8. PubMed ID: 16970449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Au-Ag hybrid nanoparticle patterns of tunable size and density on glass and polymeric supports.
    Kruss S; Srot V; van Aken PA; Spatz JP
    Langmuir; 2012 Jan; 28(2):1562-8. PubMed ID: 22168477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of plant-based phenol derivatives on the formation of Cu and Ag nanoparticles.
    Jacob JA; Biswas N; Mukherjee T; Kapoor S
    Colloids Surf B Biointerfaces; 2011 Oct; 87(1):49-53. PubMed ID: 21621984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Au nanoparticles on a templating TiO(x)/Pt(111) ultrathin polar film: a photoemission and photoelectron diffraction study.
    Rizzi GA; Sedona F; Artiglia L; Agnoli S; Barcaro G; Fortunelli A; Cavaliere E; Gavioli L; Granozzi G
    Phys Chem Chem Phys; 2009 Apr; 11(13):2177-85. PubMed ID: 19305890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands.
    Liu X; Atwater M; Wang J; Huo Q
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):3-7. PubMed ID: 16997536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-gold assisted highly conducting and biocompatible bacterial cellulose-PEDOT:PSS films for biology-device interface applications.
    Khan S; Ul-Islam M; Ullah MW; Israr M; Jang JH; Park JK
    Int J Biol Macromol; 2018 Feb; 107(Pt A):865-873. PubMed ID: 28935538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle films as electrodes: voltammetric sensitivity to the nanoparticle energy gap.
    Ranganathan S; Guo R; Murray RW
    Langmuir; 2007 Jun; 23(13):7372-7. PubMed ID: 17508765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional selective growth of nanoparticles on a polymer microstructure.
    Wu S; Han LH; Chen S
    Nanotechnology; 2009 Jul; 20(28):285312. PubMed ID: 19546503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processing and characterization of gold nanoparticles for use in plasmon probe spectroscopy and microscopy of biosystems.
    Chen Y; Preece JA; Palmer RE
    Ann N Y Acad Sci; 2008; 1130():201-6. PubMed ID: 18596349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carboxymethyl chitosan as a matrix material for platinum, gold, and silver nanoparticles.
    Laudenslager MJ; Schiffman JD; Schauer CL
    Biomacromolecules; 2008 Oct; 9(10):2682-5. PubMed ID: 18816099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water.
    Wang Z; Tan B; Hussain I; Schaeffer N; Wyatt MF; Brust M; Cooper AI
    Langmuir; 2007 Jan; 23(2):885-95. PubMed ID: 17209648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilized gold nanoparticles by reduction using 3,4-ethylenedioxythiophene-polystyrenesulfonate in aqueous solutions: nanocomposite formation, stability, and application in catalysis.
    Kumar SS; Kumar CS; Mathiyarasu J; Phani KL
    Langmuir; 2007 Mar; 23(6):3401-8. PubMed ID: 17284059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.