BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 19862515)

  • 21. A conserved UDP-glucose dehydrogenase encoded outside the hasABC operon contributes to capsule biogenesis in group A Streptococcus.
    Cole JN; Aziz RK; Kuipers K; Timmer AM; Nizet V; van Sorge NM
    J Bacteriol; 2012 Nov; 194(22):6154-61. PubMed ID: 22961854
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular characterization of hasB from an operon required for hyaluronic acid synthesis in group A streptococci. Demonstration of UDP-glucose dehydrogenase activity.
    Dougherty BA; van de Rijn I
    J Biol Chem; 1993 Apr; 268(10):7118-24. PubMed ID: 8463246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH.
    Mercade M; Cocaign-Bousquet M; Loubière P
    J Appl Microbiol; 2006 Jun; 100(6):1364-72. PubMed ID: 16696685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular mechanisms and genetics of hyaluronan biosynthesis.
    O'Regan M; Martini I; Crescenzi F; De Luca C; Lansing M
    Int J Biol Macromol; 1994 Dec; 16(6):283-6. PubMed ID: 7727340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of xylitol from D-xylose by recombinant Lactococcus lactis.
    Nyyssölä A; Pihlajaniemi A; Palva A; von Weymarn N; Leisola M
    J Biotechnol; 2005 Jul; 118(1):55-66. PubMed ID: 15916828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A recombinant E. coli bioprocess for hyaluronan synthesis.
    Mao Z; Shin HD; Chen R
    Appl Microbiol Biotechnol; 2009 Aug; 84(1):63-9. PubMed ID: 19308402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hyaluronic acid production with Corynebacterium glutamicum: effect of media composition on yield and molecular weight.
    Hoffmann J; Altenbuchner J
    J Appl Microbiol; 2014 Sep; 117(3):663-78. PubMed ID: 24863652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering the central pathways in Lactococcus lactis: functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing conditions.
    Papagianni M; Avramidis N
    Enzyme Microb Technol; 2012 Aug; 51(3):125-30. PubMed ID: 22759530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptional analysis of the cyclopropane fatty acid synthase gene of Lactococcus lactis MG1363 at low pH.
    Budin-Verneuil A; Maguin E; Auffray Y; Ehrlich SD; Pichereau V
    FEMS Microbiol Lett; 2005 Sep; 250(2):189-94. PubMed ID: 16098686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced Biosynthesis of Hyaluronic Acid Using Engineered Corynebacterium glutamicum Via Metabolic Pathway Regulation.
    Cheng F; Luozhong S; Guo Z; Yu H; Stephanopoulos G
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28869338
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced nisin production by increasing genes involved in nisin Z biosynthesis in Lactococcus lactis subsp. lactis A164.
    Cheigh CI; Park H; Choi HJ; Pyun YR
    Biotechnol Lett; 2005 Feb; 27(3):155-60. PubMed ID: 15717123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion.
    Morello E; Bermúdez-Humarán LG; Llull D; Solé V; Miraglio N; Langella P; Poquet I
    J Mol Microbiol Biotechnol; 2008; 14(1-3):48-58. PubMed ID: 17957110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight.
    Jeong E; Shim WY; Kim JH
    J Biotechnol; 2014 Sep; 185():28-36. PubMed ID: 24892811
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced hyaluronic acid production by a two-stage culture strategy based on the modeling of batch and fed-batch cultivation of Streptococcus zooepidemicus.
    Liu L; Du G; Chen J; Wang M; Sun J
    Bioresour Technol; 2008 Nov; 99(17):8532-6. PubMed ID: 18397825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic effects of the initial glucose concentration on microbial production of hyaluronic acid.
    Pires AM; Santana MH
    Appl Biochem Biotechnol; 2010 Nov; 162(6):1751-61. PubMed ID: 20411440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of lantibiotic lacticin 481 production at the transcriptional level by acid pH.
    Hindré T; Le Pennec JP; Haras D; Dufour A
    FEMS Microbiol Lett; 2004 Feb; 231(2):291-8. PubMed ID: 14987777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of the UDP-glucose dehydrogenase reaction for a coupled assay of UDP-glucose pyrophosphorylase activities.
    Elling L; Kula MR
    Biotechnol Appl Biochem; 1991 Dec; 14(3):306-16. PubMed ID: 1777115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid.
    Yu H; Stephanopoulos G
    Metab Eng; 2008 Jan; 10(1):24-32. PubMed ID: 17959405
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Large increase in brazzein expression achieved by changing the plasmid /strain combination of the NICE system in Lactococcus lactis.
    Berlec A; Strukelj B
    Lett Appl Microbiol; 2009 Jun; 48(6):750-5. PubMed ID: 19413801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.