These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19862617)

  • 1. Mathematical modeling of flow-generated forces in an in vitro system of cardiac valve development.
    Biechler SV; Potts JD; Yost MJ; Junor L; Goodwin RL; Weidner JW
    Ann Biomed Eng; 2010 Jan; 38(1):109-17. PubMed ID: 19862617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional model system of valvulogenesis.
    Goodwin RL; Nesbitt T; Price RL; Wells JC; Yost MJ; Potts JD
    Dev Dyn; 2005 May; 233(1):122-9. PubMed ID: 15765508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational simulation of hemodynamic-driven growth and remodeling of embryonic atrioventricular valves.
    Buskohl PR; Jenkins JT; Butcher JT
    Biomech Model Mechanobiol; 2012 Nov; 11(8):1205-17. PubMed ID: 22869343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibroblast growth factor (FGF)-4 can induce proliferation of cardiac cushion mesenchymal cells during early valve leaflet formation.
    Sugi Y; Ito N; Szebenyi G; Myers K; Fallon JF; Mikawa T; Markwald RR
    Dev Biol; 2003 Jun; 258(2):252-63. PubMed ID: 12798286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-seq analysis to identify novel roles of scleraxis during embryonic mouse heart valve remodeling.
    Barnette DN; VandeKopple M; Wu Y; Willoughby DA; Lincoln J
    PLoS One; 2014; 9(7):e101425. PubMed ID: 24983472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remodeling of the myocardium in early trabeculation and cardiac valve formation; a role for TGFβ2.
    Kruithof BP; Kruithof-De-Julio M; Poelmann RE; Gittenberger-De-Groot AC; Gaussin V; Goumans MJ
    Int J Dev Biol; 2013; 57(11-12):853-63. PubMed ID: 24623077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fate of the atrioventricular endocardial cushions in the developing chick heart.
    Chin C; Gandour-Edwards R; Oltjen S; Choy M
    Pediatr Res; 1992 Oct; 32(4):390-3. PubMed ID: 1437388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of heart valve development and disease.
    O'Donnell A; Yutzey KE
    Development; 2020 Jul; 147(13):. PubMed ID: 32620577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring BMPRIA-mediated signaling in cardiac neural crest.
    Nomura-Kitabayashi A; Phoon CK; Kishigami S; Rosenthal J; Yamauchi Y; Abe K; Yamamura K; Samtani R; Lo CW; Mishina Y
    Am J Physiol Heart Circ Physiol; 2009 Nov; 297(5):H1617-28. PubMed ID: 19717734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Further reconciliation between pathoanatomy and pathophysiology of stenotic cardiac valves.
    Gorlin R; Gorlin WB
    J Am Coll Cardiol; 1990 Apr; 15(5):1181-2. PubMed ID: 2312975
    [No Abstract]   [Full Text] [Related]  

  • 11. Knockout of tnni1b in zebrafish causes defects in atrioventricular valve development via the inhibition of the myocardial wnt signaling pathway.
    Cai C; Sang C; Du J; Jia H; Tu J; Wan Q; Bao B; Xie S; Huang Y; Li A; Li J; Yang K; Wang S; Lu Q
    FASEB J; 2019 Jan; 33(1):696-710. PubMed ID: 30044923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental technique of measuring dynamic fluid shear stress on the aortic surface of the aortic valve leaflet.
    Yap CH; Saikrishnan N; Tamilselvan G; Yoganathan AP
    J Biomech Eng; 2011 Jun; 133(6):061007. PubMed ID: 21744927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of the atrioventricular valve tension apparatus in the human heart.
    Oosthoek PW; Wenink AC; Vrolijk BC; Wisse LJ; DeRuiter MC; Poelmann RE; Gittenberger-de Groot AC
    Anat Embryol (Berl); 1998 Oct; 198(4):317-29. PubMed ID: 9764545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transitions in early embryonic atrioventricular valvular function correspond with changes in cushion biomechanics that are predictable by tissue composition.
    Butcher JT; McQuinn TC; Sedmera D; Turner D; Markwald RR
    Circ Res; 2007 May; 100(10):1503-11. PubMed ID: 17478728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of cell biology and leaflet remodeling in the progression of heart valve disease.
    Xu S; Grande-Allen KJ
    Methodist Debakey Cardiovasc J; 2010; 6(1):2-7. PubMed ID: 20360651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lineage and morphogenetic analysis of the cardiac valves.
    de Lange FJ; Moorman AF; Anderson RH; Männer J; Soufan AT; de Gier-de Vries C; Schneider MD; Webb S; van den Hoff MJ; Christoffels VM
    Circ Res; 2004 Sep; 95(6):645-54. PubMed ID: 15297379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculations of cardiac valve stenosis: restoring an old concept for advanced applications.
    Gorlin R
    J Am Coll Cardiol; 1987 Oct; 10(4):920-2. PubMed ID: 3655156
    [No Abstract]   [Full Text] [Related]  

  • 18. Heart valve development: regulatory networks in development and disease.
    Combs MD; Yutzey KE
    Circ Res; 2009 Aug; 105(5):408-21. PubMed ID: 19713546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of operatively excised cardiac valves: etiologic determination of valvular heart disease.
    Waller BF; Bloch T; Barker BG; Roe SJ; Brown JW; Mahomed Y
    Cardiol Clin; 1984 Nov; 2(4):687-716. PubMed ID: 6544649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development.
    Heckel E; Boselli F; Roth S; Krudewig A; Belting HG; Charvin G; Vermot J
    Curr Biol; 2015 May; 25(10):1354-61. PubMed ID: 25959969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.