BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19862799)

  • 1. Effect of fracture gap on stability of compression plate fixation: a finite element study.
    Oh JK; Sahu D; Ahn YH; Lee SJ; Tsutsumi S; Hwang JH; Jung DY; Perren SM; Oh CW
    J Orthop Res; 2010 Apr; 28(4):462-7. PubMed ID: 19862799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the bone-plate material and the presence of a gap between the fractured bone and plate on the predicted stresses at the fractured bone.
    Fouad H
    Med Eng Phys; 2010 Sep; 32(7):783-9. PubMed ID: 20627657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of fracture gap on stability of compression plate fixation: a finite element study.
    Beaupre GS
    J Orthop Res; 2011 Jan; 29(1):152; author reply 153. PubMed ID: 20607817
    [No Abstract]   [Full Text] [Related]  

  • 4. Comparison of plate-screw systems used in mandibular fracture reduction: finite element analysis.
    Lovald ST; Khraishi T; Wagner J; Baack B; Kelly J; Wood J
    J Biomech Eng; 2006 Oct; 128(5):654-62. PubMed ID: 16995751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How much do locked screws add to the fixation of "hybrid" plate constructs in osteoporotic bone?
    Freeman AL; Tornetta P; Schmidt A; Bechtold J; Ricci W; Fleming M
    J Orthop Trauma; 2010 Mar; 24(3):163-9. PubMed ID: 20182252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biomechanical comparison of locked plate fixation with percutaneous insertion capability versus the angled blade plate in a subtrochanteric fracture gap model.
    Crist BD; Khalafi A; Hazelwood SJ; Lee MA
    J Orthop Trauma; 2009 Oct; 23(9):622-7. PubMed ID: 19897982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superior versus anteroinferior plating of the clavicle: a finite element study.
    Favre P; Kloen P; Helfet DL; Werner CM
    J Orthop Trauma; 2011 Nov; 25(11):661-5. PubMed ID: 21904229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of function-graded materials as fracture fixation bone-plates under combined loading conditions using finite element modelling.
    Fouad H
    Med Eng Phys; 2011 May; 33(4):456-63. PubMed ID: 21146439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical considerations in plate osteosynthesis: the effect of plate-to-bone compression with and without angular screw stability.
    Stoffel K; Lorenz KU; Kuster MS
    J Orthop Trauma; 2007 Jul; 21(6):362-8. PubMed ID: 17620993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical and biological aspects of defect treatment in fractures using helical plates.
    Perren SM; Regazzoni P; Fernandez AA
    Acta Chir Orthop Traumatol Cech; 2014; 81(4):267-71. PubMed ID: 25137496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical comparison of two different periarticular plating systems for stabilization of complex distal humerus fractures.
    Schwartz A; Oka R; Odell T; Mahar A
    Clin Biomech (Bristol, Avon); 2006 Nov; 21(9):950-5. PubMed ID: 16782245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical comparison of proximal locking plates and blade plates for the treatment of comminuted subtrochanteric femoral fractures.
    Floyd JC; O'Toole RV; Stall A; Forward DP; Nabili M; Shillingburg D; Hsieh A; Nascone JW
    J Orthop Trauma; 2009 Oct; 23(9):628-33. PubMed ID: 19897983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical evaluation of the modified double-plating fixation for the distal radius fracture.
    Cheng HY; Lin CL; Lin YH; Chen AC
    Clin Biomech (Bristol, Avon); 2007 Jun; 22(5):510-7. PubMed ID: 17328995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual small fragment plating improves screw-to-screw load sharing for mid-diaphyseal humeral fracture fixation: a finite element study.
    Kosmopoulos V; Luedke C; Nana AD
    Technol Health Care; 2015; 23(1):83-92. PubMed ID: 25408282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of three models of extra-articular distal humerus fracture osteosynthesis using the finite element method on an osteoporotic computational model.
    Sabalic S; Kodvanj J; Pavic A
    Injury; 2013 Sep; 44 Suppl 3():S56-61. PubMed ID: 24060021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biomechanical study of four palmar locking plates and one non-locking palmar plate for distal radius fractures: stiffness and load to failure tests in a cadaver model].
    Rudig L; Mehling I; Klitscher D; Mehler D; Prommersberger KJ; Rommens PM; Müller LP
    Biomed Tech (Berl); 2009 Jun; 54(3):150-8. PubMed ID: 19469665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Less rigid internal fixation plates: historical perspectives and new concepts.
    Woo SL; Lothringer KS; Akeson WH; Coutts RD; Woo YK; Simon BR; Gomez MA
    J Orthop Res; 1984; 1(4):431-49. PubMed ID: 6491792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical testing of the locking compression plate: when does the distance between bone and implant significantly reduce construct stability?
    Ahmad M; Nanda R; Bajwa AS; Candal-Couto J; Green S; Hui AC
    Injury; 2007 Mar; 38(3):358-64. PubMed ID: 17296199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical and histological evaluation of the application of biodegradable poly-L-lactic cushion to the plate internal fixation for bone fracture healing.
    Fan Y; Xiu K; Duan H; Zhang M
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S7-S16. PubMed ID: 18291564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of carbon fibre composite fracture fixation plate using finite element analysis.
    Saidpour SH
    Ann Biomed Eng; 2006 Jul; 34(7):1157-63. PubMed ID: 16732432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.