BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

775 related articles for article (PubMed ID: 19862843)

  • 1. The pharmacological chaperone 1-deoxynojirimycin increases the activity and lysosomal trafficking of multiple mutant forms of acid alpha-glucosidase.
    Flanagan JJ; Rossi B; Tang K; Wu X; Mascioli K; Donaudy F; Tuzzi MR; Fontana F; Cubellis MV; Porto C; Benjamin E; Lockhart DJ; Valenzano KJ; Andria G; Parenti G; Do HV
    Hum Mutat; 2009 Dec; 30(12):1683-92. PubMed ID: 19862843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pharmacological chaperone AT2220 increases the specific activity and lysosomal delivery of mutant acid alpha-glucosidase, and promotes glycogen reduction in a transgenic mouse model of Pompe disease.
    Khanna R; Powe AC; Lun Y; Soska R; Feng J; Dhulipala R; Frascella M; Garcia A; Pellegrino LJ; Xu S; Brignol N; Toth MJ; Do HV; Lockhart DJ; Wustman BA; Valenzano KJ
    PLoS One; 2014; 9(7):e102092. PubMed ID: 25036864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical chaperones improve transport and enhance stability of mutant alpha-glucosidases in glycogen storage disease type II.
    Okumiya T; Kroos MA; Vliet LV; Takeuchi H; Van der Ploeg AT; Reuser AJ
    Mol Genet Metab; 2007 Jan; 90(1):49-57. PubMed ID: 17095274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and structural study on a S529V mutant acid α-glucosidase responsive to pharmacological chaperones.
    Tajima Y; Saito S; Ohno K; Tsukimura T; Tsujino S; Sakuraba H
    J Hum Genet; 2011 Jun; 56(6):440-6. PubMed ID: 21471980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 5-
    Kato A; Nakagome I; Kanekiyo U; Lu TT; Li YX; Yoshimura K; Kishida M; Shinzawa K; Yoshida T; Tanaka N; Jia YM; Nash RJ; Fleet GWJ; Yu CY
    J Med Chem; 2022 Feb; 65(3):2329-2341. PubMed ID: 35072486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteasome inhibitors improve the function of mutant lysosomal α-glucosidase in fibroblasts from Pompe disease patient carrying c.546G>T mutation.
    Shimada Y; Nishida H; Nishiyama Y; Kobayashi H; Higuchi T; Eto Y; Ida H; Ohashi T
    Biochem Biophys Res Commun; 2011 Nov; 415(2):274-8. PubMed ID: 22027144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic structure-activity study on potential chaperone lead compounds for acid α-glucosidase.
    Bruckmann C; Repo H; Kuokkanen E; Xhaard H; Heikinheimo P
    ChemMedChem; 2012 Nov; 7(11):1943-53. PubMed ID: 22969039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological enhancement of mutated alpha-glucosidase activity in fibroblasts from patients with Pompe disease.
    Parenti G; Zuppaldi A; Gabriela Pittis M; Rosaria Tuzzi M; Annunziata I; Meroni G; Porto C; Donaudy F; Rossi B; Rossi M; Filocamo M; Donati A; Bembi B; Ballabio A; Andria G
    Mol Ther; 2007 Mar; 15(3):508-14. PubMed ID: 17213836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endoplasmic reticulum stress induces autophagy through activation of p38 MAPK in fibroblasts from Pompe disease patients carrying c.546G>T mutation.
    Shimada Y; Kobayashi H; Kawagoe S; Aoki K; Kaneshiro E; Shimizu H; Eto Y; Ida H; Ohashi T
    Mol Genet Metab; 2011 Dec; 104(4):566-73. PubMed ID: 21982629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pharmacological chaperone AT2220 increases recombinant human acid α-glucosidase uptake and glycogen reduction in a mouse model of Pompe disease.
    Khanna R; Flanagan JJ; Feng J; Soska R; Frascella M; Pellegrino LJ; Lun Y; Guillen D; Lockhart DJ; Valenzano KJ
    PLoS One; 2012; 7(7):e40776. PubMed ID: 22815812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological enhancement of α-glucosidase by the allosteric chaperone N-acetylcysteine.
    Porto C; Ferrara MC; Meli M; Acampora E; Avolio V; Rosa M; Cobucci-Ponzano B; Colombo G; Moracci M; Andria G; Parenti G
    Mol Ther; 2012 Dec; 20(12):2201-11. PubMed ID: 22990675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-Butyl-l-deoxynojirimycin (l-NBDNJ): Synthesis of an Allosteric Enhancer of α-Glucosidase Activity for the Treatment of Pompe Disease.
    D'Alonzo D; De Fenza M; Porto C; Iacono R; Huebecker M; Cobucci-Ponzano B; Priestman DA; Platt F; Parenti G; Moracci M; Palumbo G; Guaragna A
    J Med Chem; 2017 Dec; 60(23):9462-9469. PubMed ID: 29112434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of human lysosomal acid α-glucosidase-a guide for the treatment of Pompe disease.
    Roig-Zamboni V; Cobucci-Ponzano B; Iacono R; Ferrara MC; Germany S; Bourne Y; Parenti G; Moracci M; Sulzenbacher G
    Nat Commun; 2017 Oct; 8(1):1111. PubMed ID: 29061980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological Enhancement of Mutated α-Glucosidase Activity in Fibroblasts from Patients with Pompe Disease.
    Parenti G; Zuppaldi A; Gabriela Pittis M; Rosaria Tuzzi M; Annunziata I; Meroni G; Porto C; Donaudy F; Rossi B; Rossi M; Filocamo M; Donati A; Bembi B; Ballabio A; Andria G
    Mol Ther; 2007 Mar; 15(3):508-514. PubMed ID: 28182897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombinant human acid alpha-glucosidase corrects acid alpha-glucosidase-deficient human fibroblasts, quail fibroblasts, and quail myoblasts.
    Yang HW; Kikuchi T; Hagiwara Y; Mizutani M; Chen YT; Van Hove JL
    Pediatr Res; 1998 Mar; 43(3):374-80. PubMed ID: 9505277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme enhancers for the treatment of Fabry and Pompe disease.
    Lukas J; Pockrandt AM; Seemann S; Sharif M; Runge F; Pohlers S; Zheng C; Gläser A; Beller M; Rolfs A; Giese AK
    Mol Ther; 2015 Mar; 23(3):456-64. PubMed ID: 25409744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical course, mutations and its functional characteristics of infantile-onset Pompe disease in Thailand.
    Ngiwsara L; Wattanasirichaigoon D; Tim-Aroon T; Rojnueangnit K; Noojaroen S; Khongkraparn A; Sawangareetrakul P; Ketudat-Cairns JR; Charoenwattanasatien R; Champattanachai V; Kuptanon C; Pangkanon S; Svasti J
    BMC Med Genet; 2019 Sep; 20(1):156. PubMed ID: 31510962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational method to characterize the missense mutations in the catalytic domain of GAA protein causing Pompe disease.
    Thirumal Kumar D; Umer Niazullah M; Tasneem S; Judith E; Susmita B; George Priya Doss C; Selvarajan E; Zayed H
    J Cell Biochem; 2019 Mar; 120(3):3491-3505. PubMed ID: 30281819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Duvoglustat HCl Increases Systemic and Tissue Exposure of Active Acid α-Glucosidase in Pompe Patients Co-administered with Alglucosidase α.
    Kishnani P; Tarnopolsky M; Roberts M; Sivakumar K; Dasouki M; Dimachkie MM; Finanger E; Goker-Alpan O; Guter KA; Mozaffar T; Pervaiz MA; Laforet P; Levine T; Adera M; Lazauskas R; Sitaraman S; Khanna R; Benjamin E; Feng J; Flanagan JJ; Barth J; Barlow C; Lockhart DJ; Valenzano KJ; Boudes P; Johnson FK; Byrne B
    Mol Ther; 2017 May; 25(5):1199-1208. PubMed ID: 28341561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pharmacological chaperone N-butyldeoxynojirimycin enhances enzyme replacement therapy in Pompe disease fibroblasts.
    Porto C; Cardone M; Fontana F; Rossi B; Tuzzi MR; Tarallo A; Barone MV; Andria G; Parenti G
    Mol Ther; 2009 Jun; 17(6):964-71. PubMed ID: 19293774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.