BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19863058)

  • 1. Sphingomyelinase-induced phase transformations: causing morphology switches and multiple-time-domain ceramide generation in model raft membranes.
    Chao L; Gast AP; Hatton TA; Jensen KF
    Langmuir; 2010 Jan; 26(1):344-56. PubMed ID: 19863058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional solvent-mediated phase transformation in lipid membranes induced by sphingomyelinase.
    Chao L; Chen F; Jensen KF; Hatton TA
    Langmuir; 2011 Aug; 27(16):10050-60. PubMed ID: 21675765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers.
    Härtel S; Fanani ML; Maggio B
    Biophys J; 2005 Jan; 88(1):287-304. PubMed ID: 15489298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid raft composition modulates sphingomyelinase activity and ceramide-induced membrane physical alterations.
    Silva LC; Futerman AH; Prieto M
    Biophys J; 2009 Apr; 96(8):3210-22. PubMed ID: 19383465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide.
    Taniguchi Y; Ohba T; Miyata H; Ohki K
    Biochim Biophys Acta; 2006 Feb; 1758(2):145-53. PubMed ID: 16580624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of ceramide-enriched domains in lipid particles enhances the binding of apolipoprotein E.
    Morita SY; Nakano M; Sakurai A; Deharu Y; Vertut-Doï A; Handa T
    FEBS Lett; 2005 Mar; 579(7):1759-64. PubMed ID: 15757672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane.
    Holopainen JM; Subramanian M; Kinnunen PK
    Biochemistry; 1998 Dec; 37(50):17562-70. PubMed ID: 9860872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemolysis induced by Bacillus cereus sphingomyelinase.
    Oda M; Takahashi M; Matsuno T; Uoo K; Nagahama M; Sakurai J
    Biochim Biophys Acta; 2010 Jun; 1798(6):1073-80. PubMed ID: 20214877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers.
    Sot J; Bagatolli LA; Goñi FM; Alonso A
    Biophys J; 2006 Feb; 90(3):903-14. PubMed ID: 16284266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable nucleation time of functional sphingomyelinase--lipid features studied by membrane array statistic tool.
    Lin CY; Chao L
    Langmuir; 2013 Oct; 29(42):13008-17. PubMed ID: 24059643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bidirectional control of sphingomyelinase activity and surface topography in lipid monolayers.
    Fanani ML; Härtel S; Oliveira RG; Maggio B
    Biophys J; 2002 Dec; 83(6):3416-24. PubMed ID: 12496108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential regulation of ceramide in lipid-rich microdomains (rafts): antagonistic role of palmitoyl:protein thioesterase and neutral sphingomyelinase 2.
    Goswami R; Ahmed M; Kilkus J; Han T; Dawson SA; Dawson G
    J Neurosci Res; 2005 Jul; 81(2):208-17. PubMed ID: 15929065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface tension induced by sphingomyelin to ceramide conversion in lipid membranes.
    López-Montero I; Vélez M; Devaux PF
    Biochim Biophys Acta; 2007 Mar; 1768(3):553-61. PubMed ID: 17292325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholesterol modulation of sphingomyelinase activity at physiological temperatures.
    Contreras FX; Sot J; Ruiz-Argüello MB; Alonso A; Goñi FM
    Chem Phys Lipids; 2004 Jul; 130(2):127-34. PubMed ID: 15172829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full CD3/TCR activation through cholesterol-depleted lipid rafts.
    Rouquette-Jazdanian AK; Pelassy C; Breittmayer JP; Aussel C
    Cell Signal; 2007 Jul; 19(7):1404-18. PubMed ID: 17303381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ceramide promotes restructuring of model raft membranes.
    Johnston I; Johnston LJ
    Langmuir; 2006 Dec; 22(26):11284-9. PubMed ID: 17154617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sphingomyelinase-induced domain shape relaxation driven by out-of-equilibrium changes of composition.
    Fanani ML; De Tullio L; Hartel S; Jara J; Maggio B
    Biophys J; 2009 Jan; 96(1):67-76. PubMed ID: 18849413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingomyelinase acts by an area-activated mechanism on the liquid-expanded phase of sphingomyelin monolayers.
    De Tullio L; Maggio B; Fanani ML
    J Lipid Res; 2008 Nov; 49(11):2347-55. PubMed ID: 18509194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ordered-disordered domain coexistence in ternary lipid monolayers activates sphingomyelinase by clearing ceramide from the active phase.
    Ale EC; Maggio B; Fanani ML
    Biochim Biophys Acta; 2012 Nov; 1818(11):2767-76. PubMed ID: 22763279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphingomyelinase and membrane sphingomyelin content: determinants ofProximal tubule cell susceptibility to injury.
    Zager RA; Burkhart KM; Johnson A
    J Am Soc Nephrol; 2000 May; 11(5):894-902. PubMed ID: 10770967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.