These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 19863111)
1. Biochemical characterization of the RNase II family of exoribonucleases from the human pathogens Salmonella typhimurium and Streptococcus pneumoniae. Domingues S; Matos RG; Reis FP; Fialho AM; Barbas A; Arraiano CM Biochemistry; 2009 Dec; 48(50):11848-57. PubMed ID: 19863111 [TBL] [Abstract][Full Text] [Related]
2. RNase R mutants elucidate the catalysis of structured RNA: RNA-binding domains select the RNAs targeted for degradation. Matos RG; Barbas A; Arraiano CM Biochem J; 2009 Sep; 423(2):291-301. PubMed ID: 19630750 [TBL] [Abstract][Full Text] [Related]
3. Swapping the domains of exoribonucleases RNase II and RNase R: conferring upon RNase II the ability to degrade ds RNA. Matos RG; Barbas A; Gómez-Puertas P; Arraiano CM Proteins; 2011 Jun; 79(6):1853-67. PubMed ID: 21465561 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the functional domains of Escherichia coli RNase II. Amblar M; Barbas A; Fialho AM; Arraiano CM J Mol Biol; 2006 Jul; 360(5):921-33. PubMed ID: 16806266 [TBL] [Abstract][Full Text] [Related]
5. A single mutation in Escherichia coli ribonuclease II inactivates the enzyme without affecting RNA binding. Amblar M; Arraiano CM FEBS J; 2005 Jan; 272(2):363-74. PubMed ID: 15654875 [TBL] [Abstract][Full Text] [Related]
6. Structural basis for processivity and single-strand specificity of RNase II. Zuo Y; Vincent HA; Zhang J; Wang Y; Deutscher MP; Malhotra A Mol Cell; 2006 Oct; 24(1):149-56. PubMed ID: 16996291 [TBL] [Abstract][Full Text] [Related]
7. Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex. Frazão C; McVey CE; Amblar M; Barbas A; Vonrhein C; Arraiano CM; Carrondo MA Nature; 2006 Sep; 443(7107):110-4. PubMed ID: 16957732 [TBL] [Abstract][Full Text] [Related]
8. Characterizing ribonucleases in vitro examples of synergies between biochemical and structural analysis. Arraiano CM; Barbas A; Amblar M Methods Enzymol; 2008; 447():131-60. PubMed ID: 19161842 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of Escherichia coli RNase D, an exoribonuclease involved in structured RNA processing. Zuo Y; Wang Y; Malhotra A Structure; 2005 Jul; 13(7):973-84. PubMed ID: 16004870 [TBL] [Abstract][Full Text] [Related]
10. A XerD recombinase with unusual active site motifs in Streptococcus pneumoniae. Reichmann P; Hakenbeck R J Mol Microbiol Biotechnol; 2002 Jan; 4(1):101-10. PubMed ID: 11763967 [TBL] [Abstract][Full Text] [Related]
11. Purification and characterization of the L-Ara4N transferase protein ArnT from Salmonella typhimurium. Bretscher LE; Morrell MT; Funk AL; Klug CS Protein Expr Purif; 2006 Mar; 46(1):33-9. PubMed ID: 16226890 [TBL] [Abstract][Full Text] [Related]
12. Protein-ligand interaction: grafting of the uridine-specific determinants from the CytR regulator of Salmonella typhimurium to Escherichia coli CytR. Thomsen LE; Pedersen M; Nørregaard-Madsen M; Valentin-Hansen P; Kallipolitis BH J Mol Biol; 1999 Apr; 288(1):165-75. PubMed ID: 10329134 [TBL] [Abstract][Full Text] [Related]
13. The role of the S1 domain in exoribonucleolytic activity: substrate specificity and multimerization. Amblar M; Barbas A; Gomez-Puertas P; Arraiano CM RNA; 2007 Mar; 13(3):317-27. PubMed ID: 17242308 [TBL] [Abstract][Full Text] [Related]
14. The PPP-family protein phosphatases PrpA and PrpB of Salmonella enterica serovar Typhimurium possess distinct biochemical properties. Shi L; Kehres DG; Maguire ME J Bacteriol; 2001 Dec; 183(24):7053-7. PubMed ID: 11717262 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the structure and regulation of the udp gene of Vibrio cholerae, Yersinia pseudotuberculosis, Salmonella typhimurium, and Escherichia coli. Zolotukhina M; Ovcharova I; Eremina S; Errais Lopes L; Mironov AS Res Microbiol; 2003 Sep; 154(7):510-20. PubMed ID: 14499937 [TBL] [Abstract][Full Text] [Related]
16. Identification of the genes encoding Mn2+-dependent RNase HII and Mg2+-dependent RNase HIII from Bacillus subtilis: classification of RNases H into three families. Ohtani N; Haruki M; Morikawa M; Crouch RJ; Itaya M; Kanaya S Biochemistry; 1999 Jan; 38(2):605-18. PubMed ID: 9888800 [TBL] [Abstract][Full Text] [Related]
17. The Mycoplasma pneumoniae MPN229 gene encodes a protein that selectively binds single-stranded DNA and stimulates Recombinase A-mediated DNA strand exchange. Sluijter M; Hoogenboezem T; Hartwig NG; Vink C BMC Microbiol; 2008 Oct; 8():167. PubMed ID: 18831760 [TBL] [Abstract][Full Text] [Related]
19. The role of endoribonucleases in the regulation of RNase R. Cairrão F; Arraiano CM Biochem Biophys Res Commun; 2006 May; 343(3):731-7. PubMed ID: 16563345 [TBL] [Abstract][Full Text] [Related]
20. Structure of the active subunit of the yeast exosome core, Rrp44: diverse modes of substrate recruitment in the RNase II nuclease family. Lorentzen E; Basquin J; Tomecki R; Dziembowski A; Conti E Mol Cell; 2008 Mar; 29(6):717-28. PubMed ID: 18374646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]