These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 19863595)

  • 1. Timing of morphological and ecological innovations in the cyanobacteria--a key to understanding the rise in atmospheric oxygen.
    Blank CE; Sánchez-Baracaldo P
    Geobiology; 2010 Jan; 8(1):1-23. PubMed ID: 19863595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comprehensive Study of Cyanobacterial Morphological and Ecological Evolutionary Dynamics through Deep Geologic Time.
    Uyeda JC; Harmon LJ; Blank CE
    PLoS One; 2016; 11(9):e0162539. PubMed ID: 27649395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin and early evolution of photosynthetic eukaryotes in freshwater environments: reinterpreting proterozoic paleobiology and biogeochemical processes in light of trait evolution.
    Blank CE
    J Phycol; 2013 Dec; 49(6):1040-55. PubMed ID: 27007625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Not so old Archaea - the antiquity of biogeochemical processes in the archaeal domain of life.
    Blank CE
    Geobiology; 2009 Dec; 7(5):495-514. PubMed ID: 19843187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The continuing puzzle of the great oxidation event.
    Sessions AL; Doughty DM; Welander PV; Summons RE; Newman DK
    Curr Biol; 2009 Jul; 19(14):R567-74. PubMed ID: 19640495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial mats, stromatolites and the rise of oxygen in the Precambrian atmosphere.
    Des Marais DJ
    Glob Planet Change; 1991; 97():93-6. PubMed ID: 11538094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model of carbon fixation in microbial mats from 3,500 Myr ago to the present.
    Rothschild LJ; Mancinelli RL
    Nature; 1990 Jun; 345(6277):710-2. PubMed ID: 11536465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites.
    Reid RP; Visscher PT; Decho AW; Stolz JF; Bebout BM; Dupraz C; Macintyre IG; Paerl HW; Pinckney JL; Prufert-Bebout L; Steppe TF; DesMarais DJ
    Nature; 2000 Aug; 406(6799):989-92. PubMed ID: 10984051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A neoproterozoic transition in the marine nitrogen cycle.
    Sánchez-Baracaldo P; Ridgwell A; Raven JA
    Curr Biol; 2014 Mar; 24(6):652-7. PubMed ID: 24583016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygenation of Earth's atmosphere induced metabolic and ecologic transformations recorded in the Lomagundi-Jatuli carbon isotopic excursion.
    Sumner DY
    Appl Environ Microbiol; 2024 Jun; 90(6):e0009324. PubMed ID: 38819147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of microbial mats in the production of reduced gases on the early Earth.
    Hoehler TM; Bebout BM; Des Marais DJ
    Nature; 2001 Jul; 412(6844):324-7. PubMed ID: 11460161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic and molecular clock inferences of cyanobacterial strains within Rivulariaceae from distant environments.
    Domínguez-Escobar J; Beltrán Y; Bergman B; Díez B; Ininbergs K; Souza V; Falcón LI
    FEMS Microbiol Lett; 2011 Mar; 316(2):90-9. PubMed ID: 21208268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Snowball Earth prevention by dissolved organic carbon remineralization.
    Peltier WR; Liu Y; Crowley JW
    Nature; 2007 Dec; 450(7171):813-8. PubMed ID: 18064001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life and the evolution of Earth's atmosphere.
    Kasting JF; Siefert JL
    Science; 2002 May; 296(5570):1066-8. PubMed ID: 12004117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dating the cyanobacterial ancestor of the chloroplast.
    Falcón LI; Magallón S; Castillo A
    ISME J; 2010 Jun; 4(6):777-83. PubMed ID: 20200567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica.
    Wood SA; Rueckert A; Cowan DA; Cary SC
    ISME J; 2008 Mar; 2(3):308-20. PubMed ID: 18239611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and diagenesis of modern marine calcified cyanobacteria.
    Planavsky N; Reid RP; Lyons TW; Myshrall KL; Visscher PT
    Geobiology; 2009 Dec; 7(5):566-76. PubMed ID: 19796131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscale physiological and ecological studies of aquatic cyanobacteria: macroscale implications.
    Paerl HW
    Microsc Res Tech; 1996 Jan; 33(1):47-72. PubMed ID: 8820664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon pools and isotopic trends in a hypersaline cyanobacterial mat.
    Wieland A; Pape T; Möbius J; Klock JH; Michaelis W
    Geobiology; 2008 Mar; 6(2):171-86. PubMed ID: 18380879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Common evolutionary origin of planktonic and benthic nitrogen-fixing oscillatoriacean cyanobacteria from tropical oceans.
    Abed RM; Palinska KA; Camoin G; Golubic S
    FEMS Microbiol Lett; 2006 Jul; 260(2):171-7. PubMed ID: 16842341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.