BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 19863652)

  • 1. Complex regional influence of photoperiod on the nycthemeral functioning of the dorsal and median raphé serotoninergic system in the Syrian hamster.
    Nexon L; Poirel VJ; Clesse D; Pévet P; Raison S
    Eur J Neurosci; 2009 Nov; 30(9):1790-801. PubMed ID: 19863652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucocorticoid-mediated nycthemeral and photoperiodic regulation of tph2 expression.
    Nexon L; Sage D; Pévet P; Raison S
    Eur J Neurosci; 2011 Apr; 33(7):1308-17. PubMed ID: 21299657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian change in tryptophan hydroxylase protein levels within the rat intergeniculate leaflets and raphe nuclei.
    Malek ZS; Pévet P; Raison S
    Neuroscience; 2004; 125(3):749-58. PubMed ID: 15099688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue-specific expression of tryptophan hydroxylase mRNAs in the rat midbrain: anatomical evidence and daily profiles.
    Malek ZS; Dardente H; Pevet P; Raison S
    Eur J Neurosci; 2005 Aug; 22(4):895-901. PubMed ID: 16115212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Daily rhythm of tryptophan hydroxylase-2 messenger ribonucleic acid within raphe neurons is induced by corticoid daily surge and modulated by enhanced locomotor activity.
    Malek ZS; Sage D; Pévet P; Raison S
    Endocrinology; 2007 Nov; 148(11):5165-72. PubMed ID: 17595225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of the role of the median raphe as a regulator of hamster circadian system sensitivity to light.
    Muscat L; Tischler RC; Morin LP
    Brain Res; 2005 May; 1044(1):59-66. PubMed ID: 15862790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian clock resetting by behavioral arousal: neural correlates in the midbrain raphe nuclei and locus coeruleus.
    Webb IC; Patton DF; Landry GJ; Mistlberger RE
    Neuroscience; 2010 Mar; 166(3):739-51. PubMed ID: 20079808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal projections from the mesencephalic raphe nuclear complex to the suprachiasmatic nucleus and the deep pineal gland of the golden hamster (Mesocricetus auratus).
    Leander P; Vrang N; Møller M
    J Comp Neurol; 1998 Sep; 399(1):73-93. PubMed ID: 9725702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression in the suprachiasmatic nuclei and the photoperiodic time integration.
    Tournier BB; Birkenstock J; Pévet P; Vuillez P
    Neuroscience; 2009 Apr; 160(1):240-7. PubMed ID: 19409208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoperiod regulates the daily profiles of tryptophan hydroxylase-2 gene expression the raphe nuclei of rats.
    Malek ZS; Labban LM
    Int J Neurosci; 2021 Dec; 131(12):1155-1161. PubMed ID: 32532168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MDMA alters the response of the mammalian circadian clock in hamsters: effects on re-entrainment and triazolam-induced phase shifts.
    Gardani M; Blance RN; Biello SM
    Brain Res; 2005 Jun; 1046(1-2):105-15. PubMed ID: 15904898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of photoperiod duration and light-dark transitions on entrainment of Per1 and Per2 gene and protein expression in subdivisions of the mouse suprachiasmatic nucleus.
    Sosniyenko S; Hut RA; Daan S; Sumová A
    Eur J Neurosci; 2009 Nov; 30(9):1802-14. PubMed ID: 19840112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential distribution of estrogen receptor (ER)-alpha and ER-beta in the midbrain raphe nuclei and periaqueductal gray in male mouse: Predominant role of ER-beta in midbrain serotonergic systems.
    Nomura M; Akama KT; Alves SE; Korach KS; Gustafsson JA; Pfaff DW; Ogawa S
    Neuroscience; 2005; 130(2):445-56. PubMed ID: 15664701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The serotoninergic innervation of cerebral cortex: different classes of axon terminals arise from dorsal and median raphe nuclei.
    Kosofsky BE; Molliver ME
    Synapse; 1987; 1(2):153-68. PubMed ID: 2463687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric control of short day response in European hamsters.
    Monecke S; Malan A; Wollnik F
    J Biol Rhythms; 2006 Aug; 21(4):290-300. PubMed ID: 16864649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic AMP mediates circadian phase shifts induced by microinjection of serotonergic drugs in the hamster dorsal raphe nucleus.
    Duncan MJ; Davis VA
    Brain Res; 2005 Oct; 1058(1-2):10-6. PubMed ID: 16150426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of the hamster serotoninergic system: cell groups and diencephalic projections.
    Botchkina GI; Morin LP
    J Comp Neurol; 1993 Dec; 338(3):405-31. PubMed ID: 8113447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic stimulation in vivo and corticotropin-releasing factor in vitro increase tryptophan hydroxylase activity in the rat caudal dorsal raphe nucleus.
    Evans AK; Heerkens JL; Lowry CA
    Neurosci Lett; 2009 May; 455(1):36-41. PubMed ID: 19429102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maternal ethanol administration inhibits 5-hydroxytryptamine synthesis and tryptophan hydroxylase expression in the dorsal raphe of rat offspring.
    Kim EK; Lee MH; Kim H; Sim YJ; Shin MS; Lee SJ; Yang HY; Chang HK; Lee TH; Jang MH; Shin MC; Lee HH; Kim CJ
    Brain Dev; 2005 Oct; 27(7):472-6. PubMed ID: 16198203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entrainment and coupling of the hamster suprachiasmatic clock by daily dark pulses.
    Mendoza J; Pévet P; Challet E
    J Neurosci Res; 2009 Feb; 87(3):758-65. PubMed ID: 18831006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.