These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 19864050)

  • 1. Modelling multiple dispersion of radionuclides through the environment.
    Monte L
    J Environ Radioact; 2010 Feb; 101(2):134-9. PubMed ID: 19864050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new generic sub-model for radionuclide fixation in large catchments from continuous and single-pulse fallouts, as used in a river model.
    Håkanson L
    J Environ Radioact; 2004; 77(3):247-73. PubMed ID: 15381320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the dispersion of radionuclides following short duration releases to rivers: Part 1. Water and sediment.
    Smith JT; Bowes MJ; Denison FH
    Sci Total Environ; 2006 Sep; 368(2-3):485-501. PubMed ID: 16678242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Test and application of a general process-based dynamic coastal mass-balance model for contaminants using data for radionuclides in the Dnieper-Bug estuary.
    Håkanson L; Lindgren D
    Sci Total Environ; 2009 Jan; 407(2):899-916. PubMed ID: 19004470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance assessment model development and parameter acquisition for analysis of the transport of natural radionuclides in a Mediterranean watershed.
    Agüero A
    Sci Total Environ; 2005 Sep; 348(1-3):32-50. PubMed ID: 16162312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A modelling study on 137Cs and 239,240Pu behaviour in the Alborán Sea, western Mediterranean.
    Periáñez R
    J Environ Radioact; 2008 Apr; 99(4):694-715. PubMed ID: 18031877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Studying patterns of distribution of 137Cs and natural radionuclides in bottom sediments of water ecosystem in Moscow region].
    Shatokhin AM; Krasotkin VA; Nikiforova SE; Umniashova EE; Zozul' IuN
    Med Tr Prom Ekol; 2006; (10):25-30. PubMed ID: 17136842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion of (226)Ra and (40)K radionuclides reproduced in underwater sedimentary columns in laboratory.
    Ligero RA; Feria F; Casas-Ruiz M; Corredor C
    J Environ Radioact; 2006; 87(3):325-34. PubMed ID: 16488520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new general dynamic model predicting radionuclide concentrations and fluxes in coastal areas from readily accessible driving variables.
    Håkanson L
    J Environ Radioact; 2005; 78(2):217-45. PubMed ID: 15511560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the transport of radionuclides from land to water.
    Håkanson L
    J Environ Radioact; 2004; 73(3):267-87. PubMed ID: 15050360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling the transport of suspended particulate matter by the Rhone River plume (France). Implications for pollutant dispersion.
    Periáñez R
    Environ Pollut; 2005 Jan; 133(2):351-64. PubMed ID: 15519466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Watershed wash-off of atmospherically deposited radionuclides: review of the fluxes and their evolution with time.
    Garcia-Sanchez L
    J Environ Radioact; 2008 Apr; 99(4):563-73. PubMed ID: 18155329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 210Pb as a tool for establishing sediment chronologies: examples of potentials and limitations of conventional dating models.
    Kirchner G
    J Environ Radioact; 2011 May; 102(5):490-4. PubMed ID: 21145144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A probabilistic approach to obtaining limiting estimates of radionuclide concentration in biota.
    Higley KA; Domotor SL; Antonio EJ
    J Environ Radioact; 2003; 66(1-2):75-87. PubMed ID: 12590071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Watershed wash-off of atmospherically deposited radionuclides: a review of normalized entrainment coefficients.
    Garcia-Sanchez L; Konoplev AV
    J Environ Radioact; 2009 Sep; 100(9):774-8. PubMed ID: 18950908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. North Wales radioactivity study.
    Prosser H; McDonald P; Kayente P
    J Radiol Prot; 2006 Jun; 26(2):245-6. PubMed ID: 16738421
    [No Abstract]   [Full Text] [Related]  

  • 17. A new general mechanistic river model for radionuclides from single pulse fallouts which can be run by readily accessible driving variables.
    Håkanson L
    J Environ Radioact; 2005; 80(3):357-82. PubMed ID: 15725508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nature of radioactive contamination of components of ecosystems of streamflows from tunnels of Degelen massif.
    Panitskiy AV; Lukashenko SN
    J Environ Radioact; 2015 Jun; 144():32-40. PubMed ID: 25791901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model testing of radioactive contamination by 90Sr, 137Cs and 239,240Pu of water and bottom sediments in the Techa River (Southern Urals, Russia).
    Kryshev II; Boyer P; Monte L; Brittain JE; Dzyuba NN; Krylov AL; Kryshev AI; Nosov AV; Sanina KD; Zheleznyak MI
    Sci Total Environ; 2009 Mar; 407(7):2349-60. PubMed ID: 19167743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The first use of (236)U in the general environment and near a shutdown nuclear power plant.
    Quinto F; Steier P; Wallner G; Wallner A; Srncik M; Bichler M; Kutschera W; Terrasi F; Petraglia A; Sabbarese C
    Appl Radiat Isot; 2009 Oct; 67(10):1775-80. PubMed ID: 19523838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.