These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 19864467)
1. Does CO(2) flushing of the empty CPB circuit decrease the number of gaseous emboli in the prime? Nyman J; Rundby C; Svenarud P; van der Linden J Perfusion; 2009 Jul; 24(4):249-55. PubMed ID: 19864467 [TBL] [Abstract][Full Text] [Related]
2. Measurement of gaseous microemboli in the prime before the initiation of cardiopulmonary bypass. Husebråten IM; Fiane AE; Ringdal MIL; Thiara APS Perfusion; 2018 Jan; 33(1):30-35. PubMed ID: 28784030 [TBL] [Abstract][Full Text] [Related]
3. Significance of gaseous microemboli in the cerebral circulation during cardiopulmonary bypass in dogs. Johnston WE; Stump DA; DeWitt DS; Vinten-Johansen J; O'Steen WK; James RL; Prough DS Circulation; 1993 Nov; 88(5 Pt 2):II319-29. PubMed ID: 8222173 [TBL] [Abstract][Full Text] [Related]
4. Comparison of two different blood pumps on delivery of gaseous microemboli during pulsatile and nonpulsatile perfusion in a simulated infant CPB model. Wang S; Kunselman AR; Myers JL; Undar A ASAIO J; 2008; 54(5):538-41. PubMed ID: 18812749 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients. Qiu F; Guan Y; Su X; Kunselman A; Undar A Artif Organs; 2010 Nov; 34(11):923-9. PubMed ID: 21092035 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops. Guan Y; Palanzo D; Kunselman A; Undar A Artif Organs; 2009 Nov; 33(11):1037-43. PubMed ID: 19874280 [TBL] [Abstract][Full Text] [Related]
7. The effectiveness of low-prime cardiopulmonary bypass circuits at removing gaseous emboli. Norman MJ; Sistino JJ; Acsell JR J Extra Corpor Technol; 2004 Dec; 36(4):336-42. PubMed ID: 15679274 [TBL] [Abstract][Full Text] [Related]
8. Gaseous microemboli detection in a simulated pediatric CPB circuit using a novel ultrasound system. Miller A; Wang S; Myers JL; Undar A ASAIO J; 2008; 54(5):504-8. PubMed ID: 18812742 [TBL] [Abstract][Full Text] [Related]
9. Carbon Dioxide Flush of an Integrated Minimized Perfusion Circuit Prior to Priming Prevents Spontaneous Air Release Into the Arterial Line During Clinical Use. Stehouwer MC; de Vroege R; Hoohenkerk GJF; Hofman FN; Kelder JC; Buchner B; de Mol BA; Bruins P Artif Organs; 2017 Nov; 41(11):997-1003. PubMed ID: 28741663 [TBL] [Abstract][Full Text] [Related]
10. The capability of trapping gaseous microemboli of two pediatric arterial filters with pulsatile and nonpulsatile flow in a simulated infant CPB model. Wang S; Win KN; Kunselman AR; Woitas K; Myers JL; Undar A ASAIO J; 2008; 54(5):519-22. PubMed ID: 18812745 [TBL] [Abstract][Full Text] [Related]
11. In Vitro Evaluation of Pediatric Hollow-Fiber Membrane Oxygenators on Hemodynamic Performance and Gaseous Microemboli Handling: An International Multicenter/Multidisciplinary Approach. Wang S; Caneo LF; Jatene MB; Jatene FB; Cestari IA; Kunselman AR; Ündar A Artif Organs; 2017 Sep; 41(9):865-874. PubMed ID: 28597590 [TBL] [Abstract][Full Text] [Related]
12. Clinical real-time monitoring of gaseous microemboli in pediatric cardiopulmonary bypass. Wang S; Woitas K; Clark JB; Myers JL; Undar A Artif Organs; 2009 Nov; 33(11):1026-30. PubMed ID: 20021476 [TBL] [Abstract][Full Text] [Related]
13. Reduction in air bubble size using perfluorocarbons during cardiopulmonary bypass in the rat. Yoshitani K; de Lange F; Ma Q; Grocott HP; Mackensen GB Anesth Analg; 2006 Nov; 103(5):1089-93. PubMed ID: 17056937 [TBL] [Abstract][Full Text] [Related]
14. Comparison of gaseous microemboli counts in arterial, simultaneous and venous heat exchange with a hollow fiber membrane oxygenator. Sutton RG; Riley JB; Merrill JH J Extra Corpor Technol; 1994; 26(2):56-60. PubMed ID: 10147369 [TBL] [Abstract][Full Text] [Related]
15. Detection and classification of gaseous microemboli during pulsatile and nonpulsatile perfusion in a simulated neonatal CPB model. Undar A; Ji B; Kunselman AR; Myers JL ASAIO J; 2007; 53(6):725-9. PubMed ID: 18043156 [TBL] [Abstract][Full Text] [Related]
16. In-Vitro Evaluation of Two Types of Neonatal Oxygenators in Handling Gaseous Microemboli and Maintaining Optimal Hemodynamic Stability During Cardiopulmonary Bypass. Marupudi N; Wang S; Canêo LF; Jatene FB; Kunselman AR; Undar A Braz J Cardiovasc Surg; 2016; 31(5):343-350. PubMed ID: 27982342 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of Capiox FX05 oxygenator with an integrated arterial filter on trapping gaseous microemboli and pressure drop with open and closed purge line. Qiu F; Peng S; Kunselman A; Ündar A Artif Organs; 2010 Nov; 34(11):1053-7. PubMed ID: 21137158 [TBL] [Abstract][Full Text] [Related]
18. Impact of oxygenator characteristics on its capability to remove gaseous microemboli. De Somer F J Extra Corpor Technol; 2007 Dec; 39(4):271-3. PubMed ID: 18293817 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of the Quadrox-I neonatal oxygenator with an integrated arterial filter. Salavitabar A; Qiu F; Kunselman A; Ündar A Perfusion; 2010 Nov; 25(6):409-15. PubMed ID: 20699287 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of Capiox RX25 and Quadrox-i Adult Hollow Fiber Membrane Oxygenators in a Simulated Cardiopulmonary Bypass Circuit. Wang S; Kunselman AR; Ündar A Artif Organs; 2016 May; 40(5):E69-78. PubMed ID: 27168381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]