These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 19864565)

  • 1. Human reinforcement learning subdivides structured action spaces by learning effector-specific values.
    Gershman SJ; Pesaran B; Daw ND
    J Neurosci; 2009 Oct; 29(43):13524-31. PubMed ID: 19864565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reinforcement learning mechanism responsible for the valuation of free choice.
    Cockburn J; Collins AG; Frank MJ
    Neuron; 2014 Aug; 83(3):551-7. PubMed ID: 25066083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action selection in multi-effector decision making.
    Madlon-Kay S; Pesaran B; Daw ND
    Neuroimage; 2013 Apr; 70():66-79. PubMed ID: 23228512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalization of value in reinforcement learning by humans.
    Wimmer GE; Daw ND; Shohamy D
    Eur J Neurosci; 2012 Apr; 35(7):1092-104. PubMed ID: 22487039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural prediction errors reveal a risk-sensitive reinforcement-learning process in the human brain.
    Niv Y; Edlund JA; Dayan P; O'Doherty JP
    J Neurosci; 2012 Jan; 32(2):551-62. PubMed ID: 22238090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine-mediated reinforcement learning signals in the striatum and ventromedial prefrontal cortex underlie value-based choices.
    Jocham G; Klein TA; Ullsperger M
    J Neurosci; 2011 Feb; 31(5):1606-13. PubMed ID: 21289169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signals in human striatum are appropriate for policy update rather than value prediction.
    Li J; Daw ND
    J Neurosci; 2011 Apr; 31(14):5504-11. PubMed ID: 21471387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How instructed knowledge modulates the neural systems of reward learning.
    Li J; Delgado MR; Phelps EA
    Proc Natl Acad Sci U S A; 2011 Jan; 108(1):55-60. PubMed ID: 21173266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Navigating complex decision spaces: Problems and paradigms in sequential choice.
    Walsh MM; Anderson JR
    Psychol Bull; 2014 Mar; 140(2):466-86. PubMed ID: 23834192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural correlates of forward planning in a spatial decision task in humans.
    Simon DA; Daw ND
    J Neurosci; 2011 Apr; 31(14):5526-39. PubMed ID: 21471389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The involvement of model-based but not model-free learning signals during observational reward learning in the absence of choice.
    Dunne S; D'Souza A; O'Doherty JP
    J Neurophysiol; 2016 Jun; 115(6):3195-203. PubMed ID: 27052578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Causal Inference Gates Corticostriatal Learning.
    Dorfman HM; Tomov MS; Cheung B; Clarke D; Gershman SJ; Hughes BL
    J Neurosci; 2021 Aug; 41(32):6892-6904. PubMed ID: 34244363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain mechanism of reward prediction under predictable and unpredictable environmental dynamics.
    Tanaka SC; Samejima K; Okada G; Ueda K; Okamoto Y; Yamawaki S; Doya K
    Neural Netw; 2006 Oct; 19(8):1233-41. PubMed ID: 16979871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning.
    Gläscher J; Daw N; Dayan P; O'Doherty JP
    Neuron; 2010 May; 66(4):585-95. PubMed ID: 20510862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making.
    Schönberg T; Daw ND; Joel D; O'Doherty JP
    J Neurosci; 2007 Nov; 27(47):12860-7. PubMed ID: 18032658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human dorsal striatal activity during choice discriminates reinforcement learning behavior from the gambler's fallacy.
    Jessup RK; O'Doherty JP
    J Neurosci; 2011 Apr; 31(17):6296-304. PubMed ID: 21525269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can left-handedness be switched? Insights from an early switch of handwriting.
    Klöppel S; Vongerichten A; van Eimeren T; Frackowiak RS; Siebner HR
    J Neurosci; 2007 Jul; 27(29):7847-53. PubMed ID: 17634378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neural signature of hierarchical reinforcement learning.
    Ribas-Fernandes JJ; Solway A; Diuk C; McGuire JT; Barto AG; Niv Y; Botvinick MM
    Neuron; 2011 Jul; 71(2):370-9. PubMed ID: 21791294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Flexibility in Striatal-Cortical Circuits Supports Reinforcement Learning.
    Gerraty RT; Davidow JY; Foerde K; Galvan A; Bassett DS; Shohamy D
    J Neurosci; 2018 Mar; 38(10):2442-2453. PubMed ID: 29431652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.
    Krigolson OE; Hassall CD; Handy TC
    J Cogn Neurosci; 2014 Mar; 26(3):635-44. PubMed ID: 24168216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.