These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 19865257)

  • 1. Observation of spontaneously frequency-shifted beam fanning in photorefractive Bi12SiO20.
    Pedersen HC; Andersen PE; Johansen PM
    Opt Lett; 1995 Dec; 20(24):2475. PubMed ID: 19865257
    [No Abstract]   [Full Text] [Related]  

  • 2. Theoretical and experimental studies of hologram multiplexing that uses a random wave front generated by photorefractive beam fanning.
    Bunsen M; Okamoto A
    Appl Opt; 2005 Mar; 44(8):1454-63. PubMed ID: 15796245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical correlation of spatial-frequency-shifted images in a photorefractive BSO correlator.
    Tavassoli A; Becker MF
    Appl Opt; 2004 Mar; 43(8):1695-702. PubMed ID: 15046173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photorefractive beam-fanning effect and self-pulsations in coated LiNbO3 slabs.
    Zartov G; Tenev T; Panajotov K; Popov E; Peyeva R; Thienpont H; Veretennicoff I
    J Opt Soc Am A Opt Image Sci Vis; 2001 Jul; 18(7):1741-7. PubMed ID: 11444570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. (2+1)-dimensional soliton formation in photorefractive Bi12SiO20 crystals.
    Fazio E; Ramadan W; Belardini A; Bosco A; Bertolotti M; Petris A; Vlad VI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026611. PubMed ID: 12636845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incoherent-to-Coherent Conversion by Use of the Photorefractive Beam-Fanning Effect and Amplification by Two-Wave Coupling in a Photorefractive Ba(1-x)Sr(x)TiO(3) Crystal.
    Qiu Y; Zheng Z; Lu T; Huang W; Zhuang J; Tang DY
    Appl Opt; 2001 Feb; 40(5):687-90. PubMed ID: 18357048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal evolution of fanning in photorefractive materials.
    Segev M; Engin D; Yariv A; Valley GC
    Opt Lett; 1993 Jun; 18(12):956-8. PubMed ID: 19823257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incoherent-to-coherent conversion by use of the photorefractive fanning effect.
    Zhang J; Wang H; Yoshikado S; Aruga T
    Opt Lett; 1997 Nov; 22(21):1612-4. PubMed ID: 18188313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fanning effects in photorefractive crystals.
    Hong YH; Xie P; Dai JH; Zhu Y; Yang HG; Zhang HJ
    Opt Lett; 1993 May; 18(10):772-4. PubMed ID: 19802268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow light with photorefractive beam fanning.
    Bouldja N; Sciamanna M; Wolfersberger D
    Opt Express; 2020 Feb; 28(4):5860-5865. PubMed ID: 32121800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition between superluminal and subluminal light propagation in photorefractive Bi12SiO20 crystals.
    Bo F; Zhang G; Xu J
    Opt Express; 2005 Oct; 13(20):8198-203. PubMed ID: 19498849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image transmission through a thick dynamic distorter by the photorefractive fanning effect.
    Zhang J; Wang H; Yoshikado S; Aruga T
    Opt Lett; 1998 Apr; 23(8):585-7. PubMed ID: 18084584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fanning noise reduction in photorefractive amplifiers using incoherent erasures.
    He QB; Yeh P
    Appl Opt; 1994 Jan; 33(2):283-7. PubMed ID: 20862019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of photorefractive beam fanning using achromatic gratings.
    Rabinovich WS; Feldman BJ; Gilbreath GC
    Opt Lett; 1991 Aug; 16(15):1147-9. PubMed ID: 19776902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution incoherent-to-coherent conversion by use of the photorefractive fanning effect.
    Zhang J; Wang H; Yoshikado S; Aruga T
    Appl Opt; 1999 Feb; 38(6):995-1000. PubMed ID: 18305705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-gain, low-noise signal beam amplification in photorefractive BaTiO(3).
    Joseph J; Pillai PK; Singh K
    Appl Opt; 1991 Aug; 30(23):3315-8. PubMed ID: 20706395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced photorefractive beam fanning due to internal and external electric fields.
    Clark Iii WW; Wood GL; Miller MJ; Sharp EJ; Salamo GJ; Monson B; Neurgaonkar RR
    Appl Opt; 1990 Mar; 29(9):1249-58. PubMed ID: 20562988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced beam amplification in a photorefractive Bi(12)TiO(20) crystal by internal reflections.
    Khomenko AV; García-Weidner A; Tentori D
    Opt Lett; 1996 Jun; 21(11):776-8. PubMed ID: 19876155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slowdown of group velocity of light by means of phase coupling in photorefractive two-wave mixing.
    Zhang G; Dong R; Bo F; Xu J
    Appl Opt; 2004 Feb; 43(5):1167-73. PubMed ID: 15008499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of the lobe structure in photorefractive beam fanning.
    Montemezzani G; Zozulya AA; Czaia L; Anderson DZ; Zgonik M; Günter P
    Phys Rev A; 1995 Aug; 52(2):1791-1794. PubMed ID: 9912427
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.