These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 19865304)

  • 1. Counting, timing, and tracking with a single-photon germanium detector.
    Zappa F; Lacaita A; Cova S; Lovati P
    Opt Lett; 1996 Jan; 21(1):59-61. PubMed ID: 19865304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-photon detection beyond 1 µm: performance of commercially available InGaAs/lnP detectors.
    Lacaita A; Zappa F; Cova S; Lovati P
    Appl Opt; 1996 Jun; 35(16):2986-96. PubMed ID: 21085450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-photon detection beyond 1 µm: performance of commercially available germanium photodiodes.
    Lacaita A; Francese PA; Zappa F; Cova S
    Appl Opt; 1994 Oct; 33(30):6902-18. PubMed ID: 20941237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanosecond single-photon timing with InGaAs/InP photodiodes.
    Zappa F; Lacaita A; Cova S; Webb P
    Opt Lett; 1994 Jun; 19(11):846-8. PubMed ID: 19844465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Avalanche photodiodes and quenching circuits for single-photon detection.
    Cova S; Ghioni M; Lacaita A; Samori C; Zappa F
    Appl Opt; 1996 Apr; 35(12):1956-76. PubMed ID: 21085320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subnanosecond single-photon timing with commercially available germanium photodiodes.
    Lacaita A; Cova S; Zappa F; Francese PA
    Opt Lett; 1993 Jan; 18(1):75-7. PubMed ID: 19798355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode.
    Yan Z; Hamel DR; Heinrichs AK; Jiang X; Itzler MA; Jennewein T
    Rev Sci Instrum; 2012 Jul; 83(7):073105. PubMed ID: 22852669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photon counting with passively quenched germanium avalanche.
    Owens PC; Rarity JG; Tapster PR; Knight D; Townsend PD
    Appl Opt; 1994 Oct; 33(30):6895-901. PubMed ID: 20941236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved photoluminescence measurements of InGaAs/ InP multiple-quantum-well structures at 1.3-µm wavelengths by use of germanium single-photon avalanche photodiodes.
    Buller GS; Fancey SJ; Massa JS; Walker AC; Cova S; Lacaita A
    Appl Opt; 1996 Feb; 35(6):916-21. PubMed ID: 21069089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Note: Large active area solid state photon counter with 20 ps timing resolution and 60 fs detection delay stability.
    Prochazka I; Kodet J; Eckl J; Blazej J
    Rev Sci Instrum; 2017 Oct; 88(10):106105. PubMed ID: 29092507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatio-energetic cross-talk in photon counting detectors: N × N binning and sub-pixel masking.
    Taguchi K; Stierstorfer K; Polster C; Lee O; Kappler S
    Med Phys; 2018 Nov; 45(11):4822-4843. PubMed ID: 30136278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Gated Pinned Avalanche Photodiode Pixels for High-Speed Low-Light Imaging.
    Resetar T; De Munck K; Haspeslagh L; Rosmeulen M; Süss A; Puers R; Van Hoof C
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27537882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of the infrared detection efficiency of silicon photon-counting avalanche photodiodes by use of silicon germanium absorbing layers.
    Loudon AY; Hiskett PA; Buller GS; Carline RT; Herbert DC; Leong WY; Rarity JG
    Opt Lett; 2002 Feb; 27(4):219-21. PubMed ID: 18007759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Few-photon detection using InAs avalanche photodiodes.
    Tan CH; Velichko A; Lim LW; Ng JS
    Opt Express; 2019 Feb; 27(4):5835-5842. PubMed ID: 30876178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peltier-Cooled and Actively Quenched Operation of InGaAs/InP Avalanche Photodiodes as Photon Counters at a 1.55-mum Wavelength.
    Prochazka I
    Appl Opt; 2001 Nov; 40(33):6012-8. PubMed ID: 18364896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-aperture germanium detector package for picosecond photon counting in the 0.5-1.6-microm range.
    Prochazka I; Hamal K; Greene B; Kunimori H
    Opt Lett; 1996 Sep; 21(17):1375-7. PubMed ID: 19876357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of InGaAs/InP Avalanche Photodiodes as Gated-Mode Photon Counters.
    Ribordy G; Gautier JD; Zbinden H; Gisin N
    Appl Opt; 1998 Apr; 37(12):2272-7. PubMed ID: 18273153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Error performance analysis of a non-ideal photon counting array receiver system for optical wireless communication.
    Wang C; Wang J; Xu Z; Wang R; Zhao J; Wei Y
    Appl Opt; 2018 Aug; 57(23):6651-6656. PubMed ID: 30129608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing the collection efficiency of time-correlated single-photon counting with single-photon avalanche diodes using immersion lenses.
    Pichette C; Giudice A; Thibault S; Bérubé-Lauzière Y
    Appl Opt; 2016 Nov; 55(33):9555-9562. PubMed ID: 27869857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact SPAD-Based Pixel Architectures for Time-Resolved Image Sensors.
    Perenzoni M; Pancheri L; Stoppa D
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27223284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.