These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19865494)

  • 1. Influence of viscosity on the scattering of an air pressure wave by a rigid body: a regular boundary integral formulation.
    Homentcovschi D
    Proc Math Phys Eng Sci; 2008 Sep; 464(2097):2303-2320. PubMed ID: 19865494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A boundary integral approach to analyze the viscous scattering of a pressure wave by a rigid body.
    Homentcovschi D; Miles RN
    Eng Anal Bound Elem; 2007; 31(10):844-855. PubMed ID: 18709178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iterative Solution Method for the Linearized Poisson-Boltzmann Equation: Indirect Boundary Integral Equation Approach.
    Kim MJ; Yoon BJ
    J Colloid Interface Sci; 2001 Apr; 236(1):173-179. PubMed ID: 11254343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical solution of fractional boundary value problem with caputo-fabrizio and its fractional integral.
    Moumen Bekkouche M; Mansouri I; Ahmed AAA
    J Appl Math Comput; 2022; 68(6):4305-4316. PubMed ID: 35136391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boundary regularized integral equation formulation of the Helmholtz equation in acoustics.
    Sun Q; Klaseboer E; Khoo BC; Chan DY
    R Soc Open Sci; 2015 Jan; 2(1):140520. PubMed ID: 26064591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On a time domain boundary integral equation formulation for acoustic scattering by rigid bodies in uniform mean flow.
    Hu FQ; Pizzo ME; Nark DM
    J Acoust Soc Am; 2017 Dec; 142(6):3624. PubMed ID: 29289087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curle's equation and acoustic scattering by a sphere.
    Davis AM; Nagem RJ
    J Acoust Soc Am; 2006 Apr; 119(4):2018-26. PubMed ID: 16642815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the solution arising in two-cylinders electrostatics.
    Chen JT; Kao SK; Chou YT; Tai WC
    Math Biosci Eng; 2023 Mar; 20(6):10007-10026. PubMed ID: 37322921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of viscosity on the reflection and transmission of an acoustic wave by a periodic array of screens. The general 3-D problem.
    Homentcovschi D; Miles RN
    Wave Motion; 2008 Jan; 45(3):191-206. PubMed ID: 19122753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling sound scattering using a combination of the edge source integral equation and the boundary element method.
    Martin SR; Svensson UP; Slechta J; Smith JO
    J Acoust Soc Am; 2018 Jul; 144(1):131. PubMed ID: 30075636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation.
    Cheng L; Li Y; Grosh K
    J Comput Phys; 2013 Aug; 247():248-261. PubMed ID: 23729844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solving the hypersingular boundary integral equation in three-dimensional acoustics using a regularization relationship.
    Yan ZY; Hung KC; Zheng H
    J Acoust Soc Am; 2003 May; 113(5):2674-83. PubMed ID: 12765386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fredholm boundary-value problem for the system of fractional differential equations.
    Boichuk O; Feruk V
    Nonlinear Dyn; 2023; 111(8):7459-7468. PubMed ID: 36687007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient numerical method for a singularly perturbed Fredholm integro-differential equation with integral boundary condition.
    Durmaz ME; Amirali I; Amiraliyev GM
    J Appl Math Comput; 2023; 69(1):505-528. PubMed ID: 35698573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Random search algorithm for solving the nonlinear Fredholm integral equations of the second kind.
    Hong Z; Yan Z; Yan J
    PLoS One; 2014; 9(7):e103068. PubMed ID: 25072373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Space-time domain solutions of the wave equation by a non-singular boundary integral method and Fourier transform.
    Klaseboer E; Sepehrirahnama S; Chan DYC
    J Acoust Soc Am; 2017 Aug; 142(2):697. PubMed ID: 28863623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscous scattering of a pressure wave: calculation of the fluid tractions on a biomimetic acoustic velocity sensor.
    Homentcovschi D; Miles RN
    J Acoust Soc Am; 2006 Feb; 119(2):777-87. PubMed ID: 16521738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic microbubble dynamics with viscous effects.
    Manmi K; Wang Q
    Ultrason Sonochem; 2017 May; 36():427-436. PubMed ID: 28069230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Derivation and implementation of the boundary integral formula for the convective acoustic wave equation in time domain.
    Lee YW; Lee DJ
    J Acoust Soc Am; 2014 Dec; 136(6):2959. PubMed ID: 25480045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic scattering by a modified Werner method.
    Ravel P; Trad A
    J Acoust Soc Am; 2000 Feb; 107(2):699-708. PubMed ID: 10687678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.