These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
787 related articles for article (PubMed ID: 19865618)
1. Effect of electrochemically deposited nanohydroxyapatite on bone bonding of sandblasted/dual acid-etched titanium implant. He F; Yang G; Wang X; Zhao S Int J Oral Maxillofac Implants; 2009; 24(5):790-9. PubMed ID: 19865618 [TBL] [Abstract][Full Text] [Related]
2. In vivo comparison of bone formation on titanium implant surfaces coated with biomimetically deposited calcium phosphate or electrochemically deposited hydroxyapatite. Yang GL; He FM; Song E; Hu JA; Wang XX; Zhao SF Int J Oral Maxillofac Implants; 2010; 25(4):669-80. PubMed ID: 20657861 [TBL] [Abstract][Full Text] [Related]
3. The effect of hydroxyapatite nanocrystals on early bone formation surrounding dental implants. Svanborg LM; Hoffman M; Andersson M; Currie F; Kjellin P; Wennerberg A Int J Oral Maxillofac Surg; 2011 Mar; 40(3):308-15. PubMed ID: 21111575 [TBL] [Abstract][Full Text] [Related]
4. The removal torque of titanium implant inserted in rabbit femur coated with biomimetic deposited Ca-P coating. Fuming H; Guoli Y; Xiaoxiang W; Shifang Z J Oral Rehabil; 2008 Oct; 35(10):754-65. PubMed ID: 18466279 [TBL] [Abstract][Full Text] [Related]
5. Biological performance of chemical hydroxyapatite coating associated with implant surface modification by laser beam: biomechanical study in rabbit tibias. Faeda RS; Tavares HS; Sartori R; Guastaldi AC; Marcantonio E J Oral Maxillofac Surg; 2009 Aug; 67(8):1706-15. PubMed ID: 19615586 [TBL] [Abstract][Full Text] [Related]
6. The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo. Lin A; Wang CJ; Kelly J; Gubbi P; Nishimura I Int J Oral Maxillofac Implants; 2009; 24(5):808-16. PubMed ID: 19865620 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs. Gahlert M; Gudehus T; Eichhorn S; Steinhauser E; Kniha H; Erhardt W Clin Oral Implants Res; 2007 Oct; 18(5):662-8. PubMed ID: 17608736 [TBL] [Abstract][Full Text] [Related]
8. Osseointegration of zirconia implants with different surface characteristics: an evaluation in rabbits. Hoffmann O; Angelov N; Zafiropoulos GG; Andreana S Int J Oral Maxillofac Implants; 2012; 27(2):352-8. PubMed ID: 22442775 [TBL] [Abstract][Full Text] [Related]
9. Removal torque values of titanium implants in the maxilla of miniature pigs. Buser D; Nydegger T; Hirt HP; Cochran DL; Nolte LP Int J Oral Maxillofac Implants; 1998; 13(5):611-9. PubMed ID: 9796144 [TBL] [Abstract][Full Text] [Related]
10. Effect of H2O2/HCl heat treatment of implants on in vivo peri-implant bone formation. Yang GL; He FM; Zhao SS; Wang XX; Zhao SF Int J Oral Maxillofac Implants; 2008; 23(6):1020-8. PubMed ID: 19216270 [TBL] [Abstract][Full Text] [Related]
11. Enhanced osteoconductivity of micro-structured titanium implants (XiVE S CELLplus) by addition of surface calcium chemistry: a histomorphometric study in the rabbit femur. Park JW; Kim HK; Kim YJ; An CH; Hanawa T Clin Oral Implants Res; 2009 Jul; 20(7):684-90. PubMed ID: 19489932 [TBL] [Abstract][Full Text] [Related]
12. Biomechanical comparison of different surface modifications for dental implants. Ferguson SJ; Langhoff JD; Voelter K; von Rechenberg B; Scharnweber D; Bierbaum S; Schnabelrauch M; Kautz AR; Frauchiger VM; Mueller TL; van Lenthe GH; Schlottig F Int J Oral Maxillofac Implants; 2008; 23(6):1037-46. PubMed ID: 19216272 [TBL] [Abstract][Full Text] [Related]
13. Bone response to unloaded titanium implants in the fibula, iliac crest, and scapula: an animal study in the Yorkshire pig. Rohner D; Meng CS; Hutmacher DW; Tsai KT Int J Oral Maxillofac Surg; 2003 Aug; 32(4):383-9. PubMed ID: 14505621 [TBL] [Abstract][Full Text] [Related]
14. Effects of biomimetically and electrochemically deposited nano-hydroxyapatite coatings on osseointegration of porous titanium implants. Yang GL; He FM; Hu JA; Wang XX; Zhao SF Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2009 Jun; 107(6):782-9. PubMed ID: 19201624 [TBL] [Abstract][Full Text] [Related]
15. Primary stability of turned and acid-etched screw-type implants: a removal torque and histomorphometric study in rabbits. Fernandes Ede L; Unikowski IL; Teixeira ER; da Costa NP; Shinkai RS Int J Oral Maxillofac Implants; 2007; 22(6):886-92. PubMed ID: 18271369 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical comparison of biomimetically and electrochemically deposited hydroxyapatite-coated porous titanium implants. Yang GL; He FM; Hu JA; Wang XX; Zhao SF J Oral Maxillofac Surg; 2010 Feb; 68(2):420-7. PubMed ID: 20116717 [TBL] [Abstract][Full Text] [Related]
17. Early bone healing around 2 different experimental, HA grit-blasted, and dual acid-etched titanium implant surfaces. A pilot study in rabbits. Gobbato L; Arguello E; Martin IS; Hawley CE; Griffin TJ Implant Dent; 2012 Dec; 21(6):454-60. PubMed ID: 23149502 [TBL] [Abstract][Full Text] [Related]
18. Osseointegration of titanium implants with a roughened surface containing hydride ion in a rabbit model. Cheng Z; Zhang F; He F; Zhang L; Guo C; Zhao S; Yang G Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2010 Jul; 110(1):e5-12. PubMed ID: 20610295 [TBL] [Abstract][Full Text] [Related]
19. Osseointegration of anodized titanium implants coated with fibroblast growth factor-fibronectin (FGF-FN) fusion protein. Park JM; Koak JY; Jang JH; Han CH; Kim SK; Heo SJ Int J Oral Maxillofac Implants; 2006; 21(6):859-66. PubMed ID: 17190295 [TBL] [Abstract][Full Text] [Related]
20. Oxidized, bioactive implants are rapidly and strongly integrated in bone. Part 1--experimental implants. Sul YT; Jeong Y; Johansson C; Albrektsson T Clin Oral Implants Res; 2006 Oct; 17(5):521-6. PubMed ID: 16958691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]