BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19865661)

  • 21. Metallic cation induced one-dimensional assembly of poly(acrylic acid)-1-dodecanethiol-stabilized gold nanoparticles.
    Zhu L; Xue D; Wang Z
    Langmuir; 2008 Oct; 24(20):11385-9. PubMed ID: 18808165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Layer-by-layer self-assembled mutilayer films of gold nanoparticles for surface-assisted laser desorption/ionization mass spectrometry.
    Kawasaki H; Sugitani T; Watanabe T; Yonezawa T; Moriwaki H; Arakawa R
    Anal Chem; 2008 Oct; 80(19):7524-33. PubMed ID: 18778032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative study of thiol-free amphiphilic hyperbranched and linear polymers for the stabilization of large gold nanoparticles in organic solvent.
    Tang Q; Cheng F; Lou XL; Liu HJ; Chen Y
    J Colloid Interface Sci; 2009 Sep; 337(2):485-91. PubMed ID: 19523646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers.
    Lee SH; Bae KH; Kim SH; Lee KR; Park TG
    Int J Pharm; 2008 Nov; 364(1):94-101. PubMed ID: 18723087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thiolate-protected nanoparticles via organic xanthates: mechanism and implications.
    Sashuk V
    ACS Nano; 2012 Dec; 6(12):10855-61. PubMed ID: 23163226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discrete functional gold nanoparticles: hydrogen bond-assisted synthesis, magnetic purification, supramolecular dimer and trimer formation.
    Chak CP; Xuan S; Mendes PM; Yu JC; Cheng CH; Leung KC
    ACS Nano; 2009 Aug; 3(8):2129-38. PubMed ID: 19621879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new method for studying the interaction between chlorpromazine and phospholipid bilayer.
    Zhang L; Liu J; Wang E
    Biochem Biophys Res Commun; 2008 Aug; 373(2):202-5. PubMed ID: 18555793
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands.
    Liu X; Atwater M; Wang J; Huo Q
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):3-7. PubMed ID: 16997536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gold nanoparticles protected with thiol-derivatized amphiphilic poly(epsilon-caprolactone)-b-poly(acrylic acid).
    Javakhishvili I; Hvilsted S
    Biomacromolecules; 2009 Jan; 10(1):74-81. PubMed ID: 19053294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and electrochemical applications of gold nanoparticles.
    Guo S; Wang E
    Anal Chim Acta; 2007 Aug; 598(2):181-92. PubMed ID: 17719891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile one-pot synthesis of functional gold nanoparticle-polymer hybrids using ionic block copolymers as a nanoreactor.
    Ahn H; Park MJ
    Macromol Rapid Commun; 2011 Nov; 32(22):1790-7. PubMed ID: 21919105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS.
    Polavarapu L; Xu QH
    Langmuir; 2008 Oct; 24(19):10608-11. PubMed ID: 18729527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonionic surfactant-capped gold nanoparticles for selective enrichment of aminothiols prior to CE with UV absorption detection.
    Li MD; Cheng TL; Tseng WL
    Electrophoresis; 2009 Jan; 30(2):388-95. PubMed ID: 19204952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Copolymers of styrene and gold nanoparticles.
    Zhang X; Liu L; Tian J; Zhang J; Zhao H
    Chem Commun (Camb); 2008 Dec; (48):6549-51. PubMed ID: 19057775
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag(I) ions.
    Li B; Du Y; Dong S
    Anal Chim Acta; 2009 Jun; 644(1-2):78-82. PubMed ID: 19463566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional selective growth of nanoparticles on a polymer microstructure.
    Wu S; Han LH; Chen S
    Nanotechnology; 2009 Jul; 20(28):285312. PubMed ID: 19546503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studies of the binding and signaling of surface-immobilized periplasmic glucose receptors on gold nanoparticles: a glucose biosensor application.
    Andreescu S; Luck LA
    Anal Biochem; 2008 Apr; 375(2):282-90. PubMed ID: 18211816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gold nanoparticles carrying diatomic molecules (O2 and CO) in aqueous solution.
    Karasugi K; Kitagishi H; Kano K
    Chem Asian J; 2011 Mar; 6(3):825-33. PubMed ID: 21265023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical identification of the property of peripheral nerve fiber based on a biocompatible polymer film via in situ incorporating gold nanoparticles.
    Zhao W; Sun SX; Xu JJ; Chen HY; Cao XJ; Guan XH
    Anal Chem; 2008 May; 80(10):3769-76. PubMed ID: 18363334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of gold nano- and microplates in hexagonal liquid crystals.
    Wang L; Chen X; Zhan J; Chai Y; Yang C; Xu L; Zhuang W; Jing B
    J Phys Chem B; 2005 Mar; 109(8):3189-94. PubMed ID: 16851339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.